Convergence in Mean (L^2 Convergence) of Fourier Series

Xu-Yan Chen

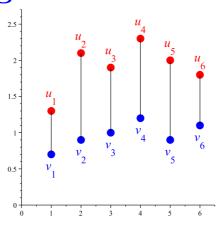
Contents

- \blacktriangleright What is L^2 distance? What is error in mean?
- \triangleright Example: L^2 approximations by truncated Fourier series.
- ▶ Theorem: Best L^2 Approximation.
- ▶ Theorem: L^2 convergence (Convergence in mean).

• Euclidean Distance Between Discrete Signals

Given two sequences $\begin{cases} u_1, & u_2, & \cdots, & u_n; \\ v_1, & v_2, & \cdots, & v_n, \end{cases}$ the Euclidean distance between them is

$$\{(u_1-v_1)^2+\cdots+(u_n-v_n)^2\}^{1/2}$$
.

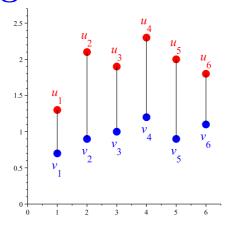


• Euclidean Distance Between Discrete Signals

Given two sequences $\begin{cases} u_1, & u_2, & \cdots, & u_n; \\ v_1, & v_2, & \cdots, & v_n, \end{cases}$ and

the Euclidean distance between them is

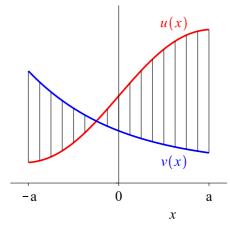
$$\{(u_1-v_1)^2+\cdots+(u_n-v_n)^2\}^{1/2}$$
.



• L² Distance Between Functions

Given two functions u(x) and v(x) on [-a, a], the L^2 distance between them is

$$\left\{ \int_{-a}^{a} [u(x) - v(x)]^2 dx \right\}^{1/2}.$$

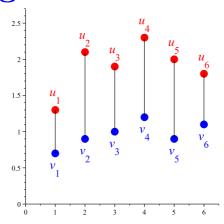


• Euclidean Distance Between Discrete Signals

Given two sequences $\begin{cases} u_1, & u_2, & \cdots, & u_n; \\ v_1, & v_2, & \cdots, & v_n, \end{cases}$ and

the Euclidean distance between them is

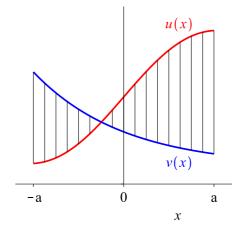
$$\{(u_1-v_1)^2+\cdots+(u_n-v_n)^2\}^{1/2}$$
.



• L² Distance Between Functions

Given two functions u(x) and v(x) on [-a, a], the L^2 distance between them is

$$\left\{ \int_{-a}^{a} [u(x) - v(x)]^2 dx \right\}^{1/2}.$$



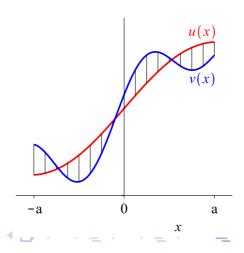
• Error in Mean

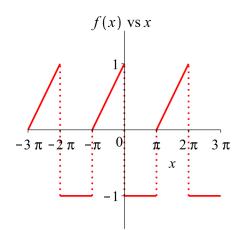
When a function u(x) is approximated by v(x),

(Error in Mean) =
$$(L^2 \text{ distance})^2$$
.

In other words,

(Error in Mean) =
$$\int_{-a}^{a} [u(x) - v(x)]^2 dx.$$

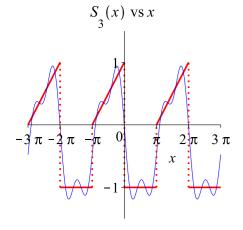




Example. f(x) is 2π periodic, $f(x) = 1 + x/\pi$ $(-\pi \le x < 0)$, and f(x) = -1 $(0 \le x < \pi)$.

The Fourier seris of f(x) is

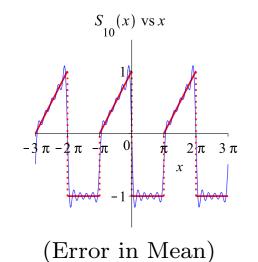
$$-\frac{1}{4} + \sum_{n=1}^{\infty} \left[\frac{1 - (-1)^n}{n^2 \pi^2} \cos(nx) + \frac{-2 + (-1)^n}{n\pi} \sin(nx) \right].$$



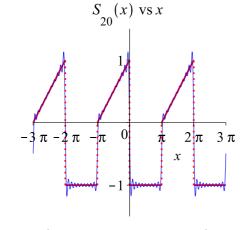
Approximate f(x) by truncating the F-series at N=3:

$$S_3(x) = -\frac{1}{4} + \sum_{n=1}^{3} \left[\frac{1 - (-1)^n}{n^2 \pi^2} \cos(nx) + \frac{-2 + (-1)^n}{n\pi} \sin(nx) \right].$$

(Error in Mean) =
$$\int_{-\pi}^{\pi} [f(x) - S_3(x)]^2 \approx 0.4028159855$$



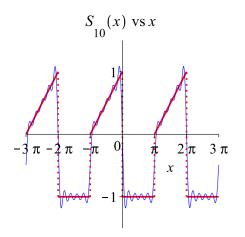
 ≈ 0.1572187764



(Error in Mean) ≈ 0.07913602023

- Error in Mean decreases with N.
- Error in Mean $\rightarrow 0$, as $N \rightarrow \infty$.

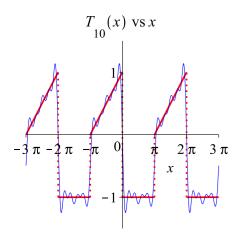
Can we choose other coefficients, to get better approximation?



For N = 10, approximate f(x) by $S_{10}(x)$:

$$S_{10}(x) = -\frac{1}{4} + \sum_{n=1}^{10} \left[\frac{1 - (-1)^n}{n^2 \pi^2} \cos(nx) + \frac{-2 + (-1)^n}{n\pi} \sin(nx) \right].$$

(The Error in Mean of S_{10}) ≈ 0.1572187764



If we replace some Fourier coefficients by, say,

$$a_3 = \frac{1}{50}, b_5 = -\frac{1}{4}, a_9 = \frac{1}{100},$$
 (just my random choices)

to form a new trig polynomial $T_{10}(x)$,

(the Error in Mean of T_{10}) ≈ 0.1683563939 .

- Whatever coefficients you try, you can never beat S_{10} .
- Fourier coefficients are our best choices, in minimizing the error in mean.
- $S_{10}(x)$ is the best L^2 approx of f(x), among all trig polynomials of degree 10.

Assumptions: f(x) is 2a periodic and $\int_{-a}^{a} f(x)^2 dx < \infty$.

Let
$$a_0, a_n, b_n$$
 be the Fourier coefficients of $f(x)$.
Let $S_N(x) = a_0 + \sum_{n=1}^N \left[a_n \cos\left(\frac{n\pi x}{a}\right) + b_n \sin\left(\frac{n\pi x}{a}\right) \right]$ (the truncated Fourier series of degree N)

Theorem (Best L^2 approximation)

 $S_N(x)$ is the best L^2 approx of f(x), among all trig polynomials of degree N.

More precisely, for any trig polynomial $T_N(x)$ of degree N,

(the error in mean of S_N) \leq (the error in mean of T_N).

Theorem (Convergence in mean. L^2 convergence.)

The error in mean of S_N decays to 0, as $N \to \infty$.

In other words, $S_N(x)$ converges to f(x) in mean, as $N \to \infty$.

Formula (Parseval's equality)

$$\int_{-a}^{a} f(x)^{2} dx = a \left[2a_{0}^{2} + \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}) \right].$$

Formula (Error in mean of S_N)

(The error in mean of
$$S_N$$
) = $\int_{-a}^a f(x)^2 dx - a \left[2a_0^2 + \sum_{n=1}^N (a_n^2 + b_n^2) \right]$
 = $a \left[\sum_{n=N+1}^\infty (a_n^2 + b_n^2) \right]$.