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» Suppose that the solutions of the homog sys X.” = A(t)X. are:
fc(t) = (11X (t) + (9Xo (t),
where X1 (t) and X5(t) are two linearly independent solutions.

» The matrix M (t) = [5{’1 (t) Xo(t) | is called a fundamental

matriz.

» The general solutions of X.’ = (t)fé can be expressed as:
M(t)C

Xe(t) =

> M'(t) = A(t)M ().
» M (t) is an invertible matrix for any t.

» The fundamental matrices are not unique.



Nonhomogeneous Linear Systems of Differential Equations:
($)nn X = AR + (1),

The Method of Variation of Parameters:



Nonhomogeneous Linear Systems of Differential Equations:
(nn R = AR+ (1),
The Method of Variation of Parameters:

» Suppose that the homogeneous system X/, = A(t)X. is solved,

o fundamental matrix M (t),
wi L
the complementary solutions X.(t) = M (t)C.



Nonhomogeneous Linear Systems of Differential Equations:
(nn R = AR+ (1),
The Method of Variation of Parameters:

» Suppose that the homogeneous system X/, = A(t)X. is solved,

o fundamental matrix M (t),
wi L
the complementary solutions X.(t) = M (t)C.

> Set  %(t) = M()i(t).



Nonhomogeneous Linear Systems of Differential Equations:
(nn R = AR+ (1),
The Method of Variation of Parameters:

» Suppose that the homogeneous system X/, = A(t)X. is solved,

o fundamental matrix M (t),
wi L
the complementary solutions X.(t) = M (t)C.

> Set  %(t) = M()i(t).

» Substitute this in (x),;. It simplifies to  d’(t) = M(t)~1 £(1).



Nonhomogeneous Linear Systems of Differential Equations:
(nn R = AR+ (1),
The Method of Variation of Parameters:

» Suppose that the homogeneous system X/, = A(t)X. is solved,

o fundamental matrix M (t),
wi L
the complementary solutions X.(t) = M (t)C.

> Set  %(t) = M()i(t).

» Substitute this in (x),;. It simplifies to  d’(t) = M(t)~1 £(1).
Proof:  (M(t)d(t)) = A@)M(t)d(t) + £(t) )
= M'(t)u(t) + M(@t)u’(t) = A(t)M(D)u(t) +£(t).
Since M'(t) = A(t)M (t), we obtain M (t)d’(t) = £(¢).
Take the inverse: 4’(t) = M(t)~1 £(¢).



Nonhomogeneous Linear Systems of Differential Equations:
(nn R = AR+ (1),
The Method of Variation of Parameters:

» Suppose that the homogeneous system X/, = A(t)X. is solved,

o fundamental matrix M (t),
wi L
the complementary solutions X.(t) = M (t)C.

> Set  %(t) = M()i(t).

» Substitute this in (x),;. It simplifies to  d’(t) = M(t)~1 £(1).
Proof:  (M(t)d(t)) = A@)M(t)d(t) + £(t) )
= M'(t)u(t) + M(@t)u’(t) = A(t)M(D)u(t) +£(t).
Since M'(t) = A(t)M (t), we obtain M (t)d’(t) = £(¢).
Take the inverse: 4’(t) = M(t)~1 £(¢).

> Integrate to get u(t).



Nonhomogeneous Linear Systems of Differential Equations:
(nn R = AR+ (1),
The Method of Variation of Parameters:
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(%), (14+1)2"+ 2" =0.

» Set w(t) = 2'(t). The eq (x), becomes a 1st order linear eq:

(%) (14 t)w" +w = 0.
Ch
1+t

> Solve (%), = w(t) =

> =w = z(t)=fw(t)dt=f1iltdt=011n|1+t|+02

> y.(t) = yo(t)z(t) = e'z(t) = ' [Cy In |1 + t]| + Cs.
Or, equivalently, y.(t) = CiefIn |1 + ¢| + Coe’.
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Example 3 (continued): (1+1t)y"” + (=1 —2t)y +ty =

e Reduction of Order: yo(t) = €' = y.(t) = Cret In |1 + t| + Coe’.

e Variation of Parameters: y.(t) = Solve the nonhomog eq.
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Example 3 (continued): (1+1t)y"” + (=1 —2t)y +ty =

e Reduction of Order: yo(t) = €' = y.(t) = Cret In |1 + t| + Coe’.

e Variation of Parameters: y.(t) = Solve the nonhomog eq.

> y.(t) gives a fundamental matrix:

M(t) _ [yl y2] _ [ etln]1+t\ et

vl Yo e'ln |1 +t| + 1it e
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Example 3 (continued): (1+1t)y"” + (=1 —2t)y +ty =

e Reduction of Order: yo(t) = €' = y.(t) = Cret In |1 + t| + Coe’.

e Variation of Parameters: y.(t) = Solve the nonhomog eq.

> y.(t) gives a fundamental matrix:

M(t) = [yl y2] _ [ etln |1+ ¢ et]

vl Yo e'ln |1 +t| + 1it e

> X = [331] = [y/] satisfies X' = A(1)X +
X2 Y




et

Example 3 (continued): (1+1t)y" + (—1—2t)y +ty = T

e Reduction of Order: yo(t) = €' = y.(t) = Cret In |1 + t| + Coe’.

e Variation of Parameters: y.(t) = Solve the nonhomog eq.

> y.(t) gives a fundamental matrix:

e’ In |1 + ¢ e'
M@= = S
Y1 Yo e'In|l+t|+ 1% e
> X = [331] = [y/] satisfles X' = A(H)X + | o |-
L2 Y (1+1)2
> Set X(t) = M (¢)d(t). Then G(t) satisfies @’(t) = M (¢)~L£(2).
N etln |l +¢| 11 o
ur) = e'In |1 +t| + ¢ et <
1++¢ (14t)2
B 1 [ et —e! ] 0
_fitt —e'In |1+t — %5 e'In|l +t[| | 7z

1
1+t
_ In[1+¢] ’
1+t

|



et

1+t

Example 3 (continued): (1+t)y" + (=1 —2t)y" +ty =

Variation of Parameters (continued)

1
> Integrate u’(t) = { 1:1T1t+t| }:

1+t

S tmdt =In|1 4+ +C,

[t dt = [sds = 552+ C (substituted s = In |1+ ¢).

L (1) = In|1+t|+ Ch
BTl 1+ 1) + Oy
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Example 3 (continued): (1+t)y" + (=1 —2t)y" +ty =

Variation of Parameters (continued)

1
> Integrate u’(t) = { 1:1T1t+t| }:

1+t

S tmdt =In|1 4+ +C,

I 1n1|}l_—|t—t| dt = [ sds = %32 + C  (substituted s = In |1 + ¢|).

() — In|1+t| 4+ Cy
BTl 1+ 1) + Oy

» Finally, we can get X(t) = M(¢t)u(t) and y(t) = x1(¢):

y(t) = wi@t)e' In|l 41 + uz(t)e’

= In|l+t|-efln|l+¢ -3 (n[1+¢)°-e
+Cret In |1 + t| + Caeét

= Le!(In|l+¢t))* + CretIn|l +¢| + Cae'.



