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◮ What is this note about?
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If the solutions ~xc(t) of
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⇒
we can solve the nonhomog
system (∗)nh.
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[
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1

2
t et
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2e−
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[

0
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2
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=





− e2t

1+et

e
1

2
t

1+et



 .



Example 2 (continued): 2y′′ − y′ − y = 3e
3

2
t

1+et

◮ Integrate ~u ′(t) =





− e2t

1+et

e
1

2
t

1+et



:

R

e2t

1+et dt =
R

s
1+s

ds =
R

(1 − 1

1+s
)ds = s − ln |1 + s| + C

(substituted s = et),
R

e
1

2
t

1+et
dt =

R

2

1+s2
ds = 2arctan s + C (substituted s = et/2).

⇒ ~u(t) =

[

−et + ln(1 + et) + C1

2 arctan(e
1

2
t) + C2

]

.



Example 2 (continued): 2y′′ − y′ − y = 3e
3

2
t

1+et

◮ Integrate ~u ′(t) =





− e2t

1+et

e
1

2
t

1+et



:

R

e2t

1+et dt =
R

s
1+s

ds =
R

(1 − 1

1+s
)ds = s − ln |1 + s| + C

(substituted s = et),
R

e
1

2
t

1+et
dt =

R

2

1+s2
ds = 2arctan s + C (substituted s = et/2).

⇒ ~u(t) =

[

−et + ln(1 + et) + C1

2 arctan(e
1

2
t) + C2

]

.

◮ Finally, the solutions ~x(t) are obtained from ~x(t) = M(t)~u(t):

~x(t) =

[

e−
1

2
t et

− 1
2e−

1

2
t et

] [

−et + ln(1 + et) + C1

2 arctan(e
1

2
t) + C2

]

= · · · ,

y(t) = x1(t)

= −e
1

2
t + e−

1

2
t ln(1 + et) + 2et arctan(e

1

2
t) + C1e

− 1

2
t + C2e

t.
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Or, equivalently, yc(t) = C1e
t ln |1 + t| + C2e

t.
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.
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]

=

[

y

y′

]

satisfies ~x ′ = A(t)~x +

[

0
et

(1+t)2

]

.

◮ Set ~x(t) = M(t)~u(t). Then ~u(t) satisfies ~u ′(t) = M(t)−1~f(t).

~u ′(t) =

[

et ln |1 + t| et

et ln |1 + t| + et

1+t
et

]−1
[

0
et

(1+t)2

]

=
1

− e2t

1+t

[

et −et

−et ln |1 + t| − et

1+t
et ln |1 + t|

]

[

0
et

(1+t)2

]

=

[

1
1+t

− ln |1+t|
1+t

]

.
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Variation of Parameters (continued)

◮ Integrate ~u ′(t) =

[

1
1+t

− ln |1+t|
1+t

]

:

R

1

1+t
dt = ln |1 + t| + C,

R ln |1+t|
1+t

dt =
R

sds = 1

2
s2 + C (substituted s = ln |1 + t|).

⇒ ~u(t) =

[

ln |1 + t| + C1

− 1
2 (ln |1 + t|)2 + C2

]

.
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◮ Integrate ~u ′(t) =

[

1
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]
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R

1

1+t
dt = ln |1 + t| + C,

R ln |1+t|
1+t

dt =
R

sds = 1

2
s2 + C (substituted s = ln |1 + t|).

⇒ ~u(t) =

[

ln |1 + t| + C1

− 1
2 (ln |1 + t|)2 + C2

]

.

◮ Finally, we can get ~x(t) = M(t)~u(t) and y(t) = x1(t):

y(t) = u1(t)e
t ln |1 + t| + u2(t)e

t

= ln |1 + t| · et ln |1 + t| − 1
2 (ln |1 + t|)

2
· et

+C1e
t ln |1 + t| + C2e

t

= 1
2et (ln |1 + t|)

2
+ C1e

t ln |1 + t| + C2e
t.


