Second Order Homogeneous Linear Differential Equations: the method of reduction of order

Xu-Yan Chen

$$a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0$$

► General solution structure:

$$y(t) = C_1 y_1(t) + C_2 y_2(t)$$

where $y_1(t)$ and $y_2(t)$ are two linearly independent solutions.

▶ No general solution method.

$$a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0$$

► General solution structure:

$$y(t) = C_1 y_1(t) + C_2 y_2(t)$$

where $y_1(t)$ and $y_2(t)$ are two linearly independent solutions.

- ▶ No general solution method.
- ▶ What is this note about?

$$a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0$$

► General solution structure:

$$y(t) = C_1 y_1(t) + C_2 y_2(t)$$

where $y_1(t)$ and $y_2(t)$ are two linearly independent solutions.

- ► No general solution method.
- ▶ What is this note about? Reduction of Order.

$$a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0$$

► General solution structure:

$$y(t) = C_1 y_1(t) + C_2 y_2(t)$$

where $y_1(t)$ and $y_2(t)$ are two linearly independent solutions.

- ► No general solution method.
- ▶ What is this note about? Reduction of Order.

If you can give me one, **just one**, nonzero solution $y_1(t)$,

$$a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0$$

► General solution structure:

$$y(t) = C_1 y_1(t) + C_2 y_2(t)$$

where $y_1(t)$ and $y_2(t)$ are two linearly independent solutions.

- No general solution method.
- ▶ What is this note about? Reduction of Order.

If you can give me one, **just one**, nonzero solution $y_1(t)$, I will get you all solutions.

$$(*)_y a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.$$

$$(*)_y a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.$$

The Method of Reduction of Order:

▶ To start, a solution $y_1(t) \not\equiv 0$ needs to be provided/prepared.

$$(*)_y a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.$$

- ▶ To start, a solution $y_1(t) \not\equiv 0$ needs to be provided/prepared.
- ► Set $y(t) = y_1(t)u(t)$.

$$(*)_y a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.$$

- ▶ To start, a solution $y_1(t) \not\equiv 0$ needs to be provided/prepared.
- ► Set $y(t) = y_1(t)u(t)$.
- ▶ Substitute $y(t) = y_1(t)u(t)$ in the eq $(*)_y$. It simplifies to

$$(*)_u$$
 $b_2(t)u''(t) + b_1(t)u'(t) = 0.$

$$(*)_y a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.$$

The Method of Reduction of Order:

- ▶ To start, a solution $y_1(t) \not\equiv 0$ needs to be provided/prepared.
- ► Set $y(t) = y_1(t)u(t)$.
- ▶ Substitute $y(t) = y_1(t)u(t)$ in the eq $(*)_y$. It simplifies to

$$(*)_u$$
 $b_2(t)u''(t) + b_1(t)u'(t) = 0.$

Details of the derivation:

$$a_2(t)(y_1u)'' + a_1(t)(y_1u)' + a_0(t)y_1u = 0,$$

$$(*)_y a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.$$

The Method of Reduction of Order:

- ▶ To start, a solution $y_1(t) \not\equiv 0$ needs to be provided/prepared.
- ► Set $y(t) = y_1(t)u(t)$.
- ▶ Substitute $y(t) = y_1(t)u(t)$ in the eq $(*)_y$. It simplifies to

$$(*)_u b_2(t)u''(t) + b_1(t)u'(t) = 0.$$

Details of the derivation:

$$a_2(t)(y_1u)'' + a_1(t)(y_1u)' + a_0(t)y_1u = 0,$$

$$a_2(y_1u'' + 2y_1'u' + y_1''u) + a_1(y_1u' + y_1'u) + a_0y_1u = 0,$$

$$(*)_y a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.$$

The Method of Reduction of Order:

- ▶ To start, a solution $y_1(t) \not\equiv 0$ needs to be provided/prepared.
- ► Set $y(t) = y_1(t)u(t)$.
- Substitute $y(t) = y_1(t)u(t)$ in the eq $(*)_y$. It simplifies to

$$(*)_u b_2(t)u''(t) + b_1(t)u'(t) = 0.$$

Details of the derivation:

$$a_2(t)(y_1u)'' + a_1(t)(y_1u)' + a_0(t)y_1u = 0,$$

$$a_2(y_1u'' + 2y_1'u' + y_1''u) + a_1(y_1u' + y_1'u) + a_0y_1u = 0,$$

$$a_2y_1u'' + (2a_2y_1' + a_1y_1)u' + (a_2y_1'' + a_1y_1' + a_0y_1)u = 0.$$

$$(*)_y a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.$$

- ▶ To start, a solution $y_1(t) \not\equiv 0$ needs to be provided/prepared.
- ► Set $y(t) = y_1(t)u(t)$.
- ▶ Substitute $y(t) = y_1(t)u(t)$ in the eq $(*)_y$. It simplifies to

$$(*)_u$$
 $b_2(t)u''(t) + b_1(t)u'(t) = 0.$

$$(*)_y a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.$$

- ▶ To start, a solution $y_1(t) \not\equiv 0$ needs to be provided/prepared.
- ► Set $y(t) = y_1(t)u(t)$.
- Substitute $y(t) = y_1(t)u(t)$ in the eq $(*)_y$. It simplifies to $(*)_u$ $b_2(t)u''(t) + b_1(t)u'(t) = 0$.
- Set v(t) = u'(t). The eq $(*)_u$ becomes a 1st order linear eq: $(*)_v \qquad b_2(t)v'(t) + b_1(t)v(t) = 0.$

$$(*)_y a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.$$

- ▶ To start, a solution $y_1(t) \not\equiv 0$ needs to be provided/prepared.
- ► Set $y(t) = y_1(t)u(t)$.
- Substitute $y(t) = y_1(t)u(t)$ in the eq $(*)_y$. It simplifies to $(*)_u$ $b_2(t)u''(t) + b_1(t)u'(t) = 0$.
- Set v(t) = u'(t). The eq $(*)_u$ becomes a 1st order linear eq: $(*)_v \qquad b_2(t)v'(t) + b_1(t)v(t) = 0.$
- Solve $(*)_v$ by either integrating factor or separating the variables (both work).

$$(*)_y a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.$$

- ▶ To start, a solution $y_1(t) \not\equiv 0$ needs to be provided/prepared.
- ► Set $y(t) = y_1(t)u(t)$.
- Substitute $y(t) = y_1(t)u(t)$ in the eq $(*)_y$. It simplifies to $(*)_u$ $b_2(t)u''(t) + b_1(t)u'(t) = 0$.
- Set v(t) = u'(t). The eq $(*)_u$ becomes a 1st order linear eq: $(*)_v \qquad b_2(t)v'(t) + b_1(t)v(t) = 0.$
- Solve $(*)_v$ by either integrating factor or separating the variables (both work).
- ► Get u from v: $u(t) = \int v(t)dt$.

$$(*)_y a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = 0.$$

- ▶ To start, a solution $y_1(t) \not\equiv 0$ needs to be provided/prepared.
- ► Set $y(t) = y_1(t)u(t)$.
- Substitute $y(t) = y_1(t)u(t)$ in the eq $(*)_y$. It simplifies to $(*)_u$ $b_2(t)u''(t) + b_1(t)u'(t) = 0$.
- Set v(t) = u'(t). The eq $(*)_u$ becomes a 1st order linear eq: $(*)_v$ $b_2(t)v'(t) + b_1(t)v(t) = 0$.
- Solve $(*)_v$ by either integrating factor or separating the variables (both work).
- ► Get u from v: $u(t) = \int v(t)dt$.
- Finally, get y from u: $y(t) = y_1(t)u(t)$.

$$(*)_y t^2(1+2t)y'' - 2t(1+t)y' + 2(1+t)y = 0,$$

$$(*)_y \qquad t^2(1+2t)y'' - 2t(1+t)y' + 2(1+t)y = 0,$$

by using the fact that $y_1(t) = t$ is a particular solution.

Set $y(t) = y_1(t)u(t) = tu(t)$ and substitute y(t) = tu(t) in $(*)_y$: $t^2(1+2t)(tu)'' - 2t(1+t)(tu)' + 2(1+t)tu = 0,$

$$(*)_y t^2(1+2t)y'' - 2t(1+t)y' + 2(1+t)y = 0,$$

by using the fact that $y_1(t) = t$ is a particular solution.

▶ Set $y(t) = y_1(t)u(t) = tu(t)$ and substitute y(t) = tu(t) in $(*)_y$:

$$t^{2}(1+2t)(tu)'' - 2t(1+t)(tu)' + 2(1+t)tu = 0,$$

$$t^{2}(1+2t)(tu'' + 2u') - 2t(1+t)(tu' + u) + 2(1+t)tu = 0,$$

$$(*)_y t^2(1+2t)y'' - 2t(1+t)y' + 2(1+t)y = 0,$$

by using the fact that $y_1(t) = t$ is a particular solution.

Set $y(t) = y_1(t)u(t) = tu(t)$ and substitute y(t) = tu(t) in $(*)_u$:

$$t^{2}(1+2t)(tu)'' - 2t(1+t)(tu)' + 2(1+t)tu = 0,$$

$$t^{2}(1+2t)(tu'' + 2u') - 2t(1+t)(tu' + u) + 2(1+t)tu = 0,$$

$$t^{3}(1+2t)u'' + 2t^{3}u' = 0,$$

$$(*)_y t^2(1+2t)y'' - 2t(1+t)y' + 2(1+t)y = 0,$$

by using the fact that $y_1(t) = t$ is a particular solution.

Set $y(t) = y_1(t)u(t) = tu(t)$ and substitute y(t) = tu(t) in $(*)_y$:

$$t^{2}(1+2t)(tu)'' - 2t(1+t)(tu)' + 2(1+t)tu = 0,$$

$$t^{2}(1+2t)(tu'' + 2u') - 2t(1+t)(tu' + u) + 2(1+t)tu = 0,$$

$$t^{3}(1+2t)u'' + 2t^{3}u' = 0,$$

$$(*)_{u} (1+2t)u'' + 2u' = 0.$$

$$(*)_y \qquad t^2(1+2t)y'' - 2t(1+t)y' + 2(1+t)y = 0,$$

by using the fact that $y_1(t) = t$ is a particular solution.

Set $y(t) = y_1(t)u(t) = tu(t)$ and substitute y(t) = tu(t) in $(*)_y$: $(*)_u$ (1+2t)u'' + 2u' = 0.

$$(*)_y \qquad t^2(1+2t)y'' - 2t(1+t)y' + 2(1+t)y = 0,$$

- Set $y(t) = y_1(t)u(t) = tu(t)$ and substitute y(t) = tu(t) in $(*)_y$: $(*)_u$ (1+2t)u'' + 2u' = 0.
- Set v(t) = u'(t). The eq $(*)_u$ becomes a 1st order linear eq: $(*)_v$ (1+2t)v' + 2v = 0.

$$(*)_y t^2(1+2t)y'' - 2t(1+t)y' + 2(1+t)y = 0,$$

- Set $y(t) = y_1(t)u(t) = tu(t)$ and substitute y(t) = tu(t) in $(*)_y$: $(*)_u$ (1+2t)u'' + 2u' = 0.
- Set v(t) = u'(t). The eq $(*)_u$ becomes a 1st order linear eq: $(*)_v$ (1+2t)v' + 2v = 0.
- ► Eq (*)_v can be solved by either integrating factor or separating variables (both work). Solve (*)_v \Rightarrow $v(t) = \frac{C_1}{1+2t}$.

$$(*)_y t^2(1+2t)y'' - 2t(1+t)y' + 2(1+t)y = 0,$$

- Set $y(t) = y_1(t)u(t) = tu(t)$ and substitute y(t) = tu(t) in $(*)_y$: $(*)_u$ (1+2t)u'' + 2u' = 0.
- Set v(t) = u'(t). The eq $(*)_u$ becomes a 1st order linear eq: $(*)_v$ (1+2t)v' + 2v = 0.
- ► Eq (*)_v can be solved by either integrating factor or separating variables (both work). Solve (*)_v \Rightarrow $v(t) = \frac{C_1}{1+2t}$.
- ► Get u from v: $u' = v \implies u(t) = \int v(t)dt = \int \frac{C_1}{1+2t}dt = C_1 \frac{1}{2}\ln(1+2t) + C_2$

$$(*)_y t^2(1+2t)y'' - 2t(1+t)y' + 2(1+t)y = 0,$$

- Set $y(t) = y_1(t)u(t) = tu(t)$ and substitute y(t) = tu(t) in $(*)_y$: $(*)_u$ (1+2t)u'' + 2u' = 0.
- Set v(t) = u'(t). The eq $(*)_u$ becomes a 1st order linear eq: $(*)_v$ (1+2t)v' + 2v = 0.
- ► Eq (*)_v can be solved by either integrating factor or separating variables (both work). Solve (*)_v \Rightarrow $v(t) = \frac{C_1}{1+2t}$.
- ► Get u from v: u' = v $\Rightarrow u(t) = \int v(t)dt = \int \frac{C_1}{1+2t}dt = C_1 \frac{1}{2}\ln(1+2t) + C_2$
- Finally, get y from u: $y(t) = y_1(t)u(t) = tu(t) = t \left[C_1 \frac{1}{2} \ln(1+2t) + C_2 \right].$

$$(*)_y t^2(1+2t)y'' - 2t(1+t)y' + 2(1+t)y = 0,$$

- Set $y(t) = y_1(t)u(t) = tu(t)$ and substitute y(t) = tu(t) in $(*)_y$: $(*)_u$ (1+2t)u'' + 2u' = 0.
- Set v(t) = u'(t). The eq $(*)_u$ becomes a 1st order linear eq: $(*)_v$ (1+2t)v' + 2v = 0.
- ► Eq (*)_v can be solved by either integrating factor or separating variables (both work). Solve (*)_v \Rightarrow $v(t) = \frac{C_1}{1+2t}$.
- ► Get u from v: $u' = v \implies u(t) = \int v(t)dt = \int \frac{C_1}{1+2t}dt = C_1 \frac{1}{2} \ln(1+2t) + C_2$
- Finally, get y from u: $y(t) = y_1(t)u(t) = tu(t) = t \left[C_1 \frac{1}{2} \ln(1+2t) + C_2 \right].$
 - Or, equivalently, $y(t) = C_1 \frac{t}{2} \ln(1+2t) + C_2 t$.

$$(*)_y \qquad 4y'' - 12y' + 9y = 0.$$

$$(*)_y \qquad 4y'' - 12y' + 9y = 0.$$

- ► Characteristic polynomial $4\lambda^2 12\lambda + 9 = 0$
 - \Rightarrow Repeated Characteristic roots: $\lambda_1 = \lambda_2 = 3/2$
 - \Rightarrow A particular solution $y_1(t) = e^{\frac{3}{2}t}$.

$$(*)_y \qquad 4y'' - 12y' + 9y = 0.$$

- ► Characteristic polynomial $4\lambda^2 12\lambda + 9 = 0$
 - \Rightarrow Repeated Characteristic roots: $\lambda_1 = \lambda_2 = 3/2$
 - \Rightarrow A particular solution $y_1(t) = e^{\frac{3}{2}t}$.
- ▶ Set $y(t) = y_1(t)u(t) = e^{\frac{3}{2}t}u(t)$ and substitute this in $(*)_y$:

$$4(e^{\frac{3}{2}t}u)'' - 12(e^{\frac{3}{2}t}u)' + 9e^{\frac{3}{2}t}u = 0,$$

$$(*)_y \qquad 4y'' - 12y' + 9y = 0.$$

- ► Characteristic polynomial $4\lambda^2 12\lambda + 9 = 0$ ⇒ Repeated Characteristic roots: $\lambda_1 = \lambda_2 = 3/2$
 - \Rightarrow A particular solution $y_1(t) = e^{\frac{3}{2}t}$.
- ▶ Set $y(t) = y_1(t)u(t) = e^{\frac{3}{2}t}u(t)$ and substitute this in $(*)_y$:

$$4(e^{\frac{3}{2}t}u)'' - 12(e^{\frac{3}{2}t}u)' + 9e^{\frac{3}{2}t}u = 0,$$

$$4(e^{\frac{3}{2}t}u'' + 3e^{\frac{3}{2}t}u' + \frac{9}{4}e^{\frac{3}{2}t}u) - 12(e^{\frac{3}{2}t}u' + \frac{3}{2}e^{\frac{3}{2}t}u) + 9e^{\frac{3}{2}t}u = 0,$$

$$(*)_y \qquad 4y'' - 12y' + 9y = 0.$$

- ► Characteristic polynomial $4\lambda^2 12\lambda + 9 = 0$ ⇒ Repeated Characteristic roots: $\lambda_1 = \lambda_2 = 3/2$ ⇒ A particular solution $y_1(t) = e^{\frac{3}{2}t}$.
- ▶ Set $y(t) = y_1(t)u(t) = e^{\frac{3}{2}t}u(t)$ and substitute this in $(*)_y$:

$$4(e^{\frac{3}{2}t}u)'' - 12(e^{\frac{3}{2}t}u)' + 9e^{\frac{3}{2}t}u = 0,$$

$$4(e^{\frac{3}{2}t}u'' + 3e^{\frac{3}{2}t}u' + \frac{9}{4}e^{\frac{3}{2}t}u) - 12(e^{\frac{3}{2}t}u' + \frac{3}{2}e^{\frac{3}{2}t}u) + 9e^{\frac{3}{2}t}u = 0,$$

$$4e^{\frac{3}{2}t}u'' = 0,$$

$$(*)_y \qquad 4y'' - 12y' + 9y = 0.$$

- ► Characteristic polynomial $4\lambda^2 12\lambda + 9 = 0$ ⇒ Repeated Characteristic roots: $\lambda_1 = \lambda_2 = 3/2$ ⇒ A particular solution $y_1(t) = e^{\frac{3}{2}t}$.
- ▶ Set $y(t) = y_1(t)u(t) = e^{\frac{3}{2}t}u(t)$ and substitute this in $(*)_y$:

$$4(e^{\frac{3}{2}t}u)'' - 12(e^{\frac{3}{2}t}u)' + 9e^{\frac{3}{2}t}u = 0,$$

$$4(e^{\frac{3}{2}t}u'' + 3e^{\frac{3}{2}t}u' + \frac{9}{4}e^{\frac{3}{2}t}u) - 12(e^{\frac{3}{2}t}u' + \frac{3}{2}e^{\frac{3}{2}t}u) + 9e^{\frac{3}{2}t}u = 0,$$

$$4e^{\frac{3}{2}t}u'' = 0,$$

$$(*)_u \qquad u'' = 0.$$

$$(*)_y \qquad 4y'' - 12y' + 9y = 0.$$

- ► Characteristic polynomial $4\lambda^2 12\lambda + 9 = 0$ ⇒ Repeated Characteristic roots: $\lambda_1 = \lambda_2 = 3/2$ ⇒ A particular solution $y_1(t) = e^{\frac{3}{2}t}$.
- ▶ Set $y(t) = y_1(t)u(t) = e^{\frac{3}{2}t}u(t)$ and substitute this in $(*)_y$:

$$4(e^{\frac{3}{2}t}u)'' - 12(e^{\frac{3}{2}t}u)' + 9e^{\frac{3}{2}t}u = 0,$$

$$4(e^{\frac{3}{2}t}u'' + 3e^{\frac{3}{2}t}u' + \frac{9}{4}e^{\frac{3}{2}t}u) - 12(e^{\frac{3}{2}t}u' + \frac{3}{2}e^{\frac{3}{2}t}u) + 9e^{\frac{3}{2}t}u = 0,$$

$$4e^{\frac{3}{2}t}u'' = 0,$$

$$(*)_{u} \qquad u'' = 0.$$

▶ Integrate once: $u' = C_1$

$$(*)_y \qquad 4y'' - 12y' + 9y = 0.$$

- ► Characteristic polynomial $4\lambda^2 12\lambda + 9 = 0$ ⇒ Repeated Characteristic roots: $\lambda_1 = \lambda_2 = 3/2$ ⇒ A particular solution $y_1(t) = e^{\frac{3}{2}t}$.
- ▶ Set $y(t) = y_1(t)u(t) = e^{\frac{3}{2}t}u(t)$ and substitute this in $(*)_y$:

$$4(e^{\frac{3}{2}t}u)'' - 12(e^{\frac{3}{2}t}u)' + 9e^{\frac{3}{2}t}u = 0,$$

$$4(e^{\frac{3}{2}t}u'' + 3e^{\frac{3}{2}t}u' + \frac{9}{4}e^{\frac{3}{2}t}u) - 12(e^{\frac{3}{2}t}u' + \frac{3}{2}e^{\frac{3}{2}t}u) + 9e^{\frac{3}{2}t}u = 0,$$

$$4e^{\frac{3}{2}t}u'' = 0,$$

$$(*)_{u} \qquad u'' = 0.$$

- ▶ Integrate once: $u' = C_1$
- ▶ Integrate again: $u(t) = C_1 t + C_2$

$$(*)_y \qquad 4y'' - 12y' + 9y = 0.$$

- ► Characteristic polynomial $4\lambda^2 12\lambda + 9 = 0$ ⇒ Repeated Characteristic roots: $\lambda_1 = \lambda_2 = 3/2$ ⇒ A particular solution $y_1(t) = e^{\frac{3}{2}t}$.
- ▶ Set $y(t) = y_1(t)u(t) = e^{\frac{3}{2}t}u(t)$ and substitute this in $(*)_y$:

$$4(e^{\frac{3}{2}t}u)'' - 12(e^{\frac{3}{2}t}u)' + 9e^{\frac{3}{2}t}u = 0,$$

$$4(e^{\frac{3}{2}t}u'' + 3e^{\frac{3}{2}t}u' + \frac{9}{4}e^{\frac{3}{2}t}u) - 12(e^{\frac{3}{2}t}u' + \frac{3}{2}e^{\frac{3}{2}t}u) + 9e^{\frac{3}{2}t}u = 0,$$

$$4e^{\frac{3}{2}t}u'' = 0,$$

$$(*)_{u} \qquad u'' = 0.$$

- ▶ Integrate once: $u' = C_1$
- ▶ Integrate again: $u(t) = C_1 t + C_2$
- Finally, get y from u: $y(t) = y_1(t)u(t) = e^{\frac{3}{2}t}u(t)$.

$$y(t) = C_1 t e^{\frac{3}{2}t} + C_2 e^{\frac{3}{2}t}.$$