2D Homogeneous Linear Systems with Constant Coefficients — perturbed systems

Xu-Yan Chen

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Eigenvalues & (generalized) eigenvectors of $A \Rightarrow$ solution formulas, dynamics, stability/instability,....

Eigenvalues & (generalized) eigenvectors of $A \Rightarrow$ solution formulas, dynamics, stability/instability,....

Negative eigenvalues $\lambda < 0$ Complex eigenvalues λ with $\operatorname{Re} \lambda < 0$ $\left. \right\}$ help stabilization.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● の�?

Eigenvalues & (generalized) eigenvectors of $A \Rightarrow$ solution formulas, dynamics, stability/instability,....

Negative eigenvalues $\lambda < 0$ Complex eigenvalues λ with $\operatorname{Re} \lambda < 0$ help stabilization.

Positive eigenvalues $\lambda > 0$ Complex eigenvalues λ with $\operatorname{Re} \lambda > 0$ $\left. \right\}$ imply instability.

Eigenvalues & (generalized) eigenvectors of $A \Rightarrow$ solution formulas, dynamics, stability/instability,....

Negative eigenvalues $\lambda < 0$ Complex eigenvalues λ with $\operatorname{Re} \lambda < 0$ help stabilization.

Zero eigenvalues $\lambda = 0$ Complex eigenvalues λ with $\operatorname{Re} \lambda = 0$ are "neutral".

Positive eigenvalues $\lambda > 0$ Complex eigenvalues λ with $\operatorname{Re} \lambda > 0$ $\left. \right\}$ imply instability.

Suppose we have solved $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ & have found the stability/instability of the equilibrium $\vec{\mathbf{x}} = \vec{\mathbf{a}}$.

Linear perturbations: Change matrix A a little bit & consider $\vec{\mathbf{x}}' = B(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ where $B \approx A$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Suppose we have solved $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ & have found the stability/instability of the equilibrium $\vec{\mathbf{x}} = \vec{\mathbf{a}}$.

Linear perturbations: Change matrix A a little bit & consider $\vec{\mathbf{x}}' = B(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ where $B \approx A$.

• What can we tell about the perturbed system $\vec{\mathbf{x}}' = B(\vec{\mathbf{x}} - \vec{\mathbf{a}})$, by using only the info about $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

Suppose we have solved $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ & have found the stability/instability of the equilibrium $\vec{\mathbf{x}} = \vec{\mathbf{a}}$.

Linear perturbations: Change matrix A a little bit & consider $\vec{\mathbf{x}}' = B(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ where $B \approx A$.

- What can we tell about the perturbed system $\vec{\mathbf{x}}' = B(\vec{\mathbf{x}} \vec{\mathbf{a}})$, by using only the info about $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} \vec{\mathbf{a}})$?
- Are the dynamics of $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} \vec{\mathbf{a}})$ & that of $\vec{\mathbf{x}}' = B(\vec{\mathbf{x}} \vec{\mathbf{a}})$ essentially the same, when B is almost equal to A?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Suppose we have solved $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ & have found the stability/instability of the equilibrium $\vec{\mathbf{x}} = \vec{\mathbf{a}}$.

Linear perturbations: Change matrix A a little bit & consider $\vec{\mathbf{x}}' = B(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ where $B \approx A$.

- What can we tell about the perturbed system $\vec{\mathbf{x}}' = B(\vec{\mathbf{x}} \vec{\mathbf{a}})$, by using only the info about $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} \vec{\mathbf{a}})$?
- Are the dynamics of $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} \vec{\mathbf{a}})$ & that of $\vec{\mathbf{x}}' = B(\vec{\mathbf{x}} \vec{\mathbf{a}})$ essentially the same, when B is almost equal to A?

• Or, will the slightly perturbed system $\vec{\mathbf{x}}' = B(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ behave in ways completely different from $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Suppose we have solved $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ & have found the stability/instability of the equilibrium $\vec{\mathbf{x}} = \vec{\mathbf{a}}$.

Linear perturbations: Change matrix A a little bit & consider $\vec{\mathbf{x}}' = B(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ where $B \approx A$.

- What can we tell about the perturbed system $\vec{\mathbf{x}}' = B(\vec{\mathbf{x}} \vec{\mathbf{a}})$, by using only the info about $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} \vec{\mathbf{a}})$?
- Are the dynamics of $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} \vec{\mathbf{a}})$ & that of $\vec{\mathbf{x}}' = B(\vec{\mathbf{x}} \vec{\mathbf{a}})$ essentially the same, when B is almost equal to A?
- Or, will the slightly perturbed system $\vec{\mathbf{x}}' = B(\vec{\mathbf{x}} \vec{\mathbf{a}})$ behave in ways completely different from $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} \vec{\mathbf{a}})$?

Nonlinear perturbations: Consider $\vec{\mathbf{x}}' = \vec{\mathbf{f}}(\vec{\mathbf{x}})$, where $\vec{\mathbf{f}}(\vec{\mathbf{x}}) \approx A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$.

• What can we tell about the perturbed system $\vec{\mathbf{x}}' = \vec{\mathbf{f}}(\vec{\mathbf{x}})$, by using only the info about $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$?

Suppose we have solved $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ & have found the stability/instability of the equilibrium $\vec{\mathbf{x}} = \vec{\mathbf{a}}$.

Linear perturbations: Change matrix A a little bit & consider $\vec{\mathbf{x}}' = B(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ where $B \approx A$.

- What can we tell about the perturbed system $\vec{\mathbf{x}}' = B(\vec{\mathbf{x}} \vec{\mathbf{a}})$, by using only the info about $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} \vec{\mathbf{a}})$?
- Are the dynamics of $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} \vec{\mathbf{a}})$ & that of $\vec{\mathbf{x}}' = B(\vec{\mathbf{x}} \vec{\mathbf{a}})$ essentially the same, when B is almost equal to A?
- Or, will the slightly perturbed system $\vec{\mathbf{x}}' = B(\vec{\mathbf{x}} \vec{\mathbf{a}})$ behave in ways completely different from $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} \vec{\mathbf{a}})$?

- What can we tell about the perturbed system $\vec{\mathbf{x}}' = \vec{\mathbf{f}}(\vec{\mathbf{x}})$, by using only the info about $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} \vec{\mathbf{a}})$?
- Are the dynamics of $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} \vec{\mathbf{a}})$ & that of $\vec{\mathbf{x}}' = \vec{\mathbf{f}}(\vec{\mathbf{x}})$ essentially the same? Or, will they be markedly different?

Example 1.

Original Linear Dynamics: Attractive Improper Node

Example 1.

$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}, A = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix} \qquad \vec{\mathbf{x}}' = B\vec{\mathbf{x}}, B =$$
Eigenvalues & eigenvectors:

$$\lambda_1 = -2, \vec{\mathbf{u}}_1 = \begin{bmatrix} 2\\ 1 \end{bmatrix}$$

$$\lambda_2 = -5, \vec{\mathbf{u}}_2 = \begin{bmatrix} -1\\ 1 \end{bmatrix}$$
General solutions:

$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2\\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1\\ 1 \end{bmatrix}$$

Original Linear Dynamics: Attractive Improper Node

 $\begin{bmatrix} -2.98 & 1.98 \\ 0.97 & -4.01 \end{bmatrix}$

Example 1.

Example 2 (a).

Example 2 (a).

$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}, A = \begin{bmatrix} -3 & -6\\ -1 & -2 \end{bmatrix}$$

Eigenvalues & eigenvectors:
$$\lambda_1 = 0, \vec{\mathbf{u}}_1 = \begin{bmatrix} -2\\ 1 \end{bmatrix}$$

$$\lambda_2 = -5, \vec{\mathbf{u}}_2 = \begin{bmatrix} 3\\ 1 \end{bmatrix}$$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} -2\\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} 3\\ 1 \end{bmatrix}$$

Original Linear Dyanmics: Attractive
Line of Equilibria

$$\vec{\mathbf{x}}' = B\vec{\mathbf{x}}, B = \begin{bmatrix} -3.09 & -5.83\\ -0.98 & -2.01 \end{bmatrix}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

Example 2 (a).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example 2 (b).

$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}, A = \begin{bmatrix} -3 & -6\\ -1 & -2 \end{bmatrix}$$

Eigenvalues & eigenvectors:
$$\lambda_1 = 0, \vec{\mathbf{u}}_1 = \begin{bmatrix} -2\\ 1 \end{bmatrix}$$
$$\lambda_2 = -5, \vec{\mathbf{u}}_2 = \begin{bmatrix} 3\\ 1 \end{bmatrix}$$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} -2\\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} 3\\ 1 \end{bmatrix}$$

Original Linear Dyanmics: Attractive
Line of Equilibria

Example 2 (b).

$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}, A = \begin{bmatrix} -3 & -6\\ -1 & -2 \end{bmatrix}$$

Eigenvalues & eigenvectors:
$$\lambda_1 = 0, \vec{\mathbf{u}}_1 = \begin{bmatrix} -2\\ 1 \end{bmatrix}$$

$$\lambda_2 = -5, \vec{\mathbf{u}}_2 = \begin{bmatrix} 3\\ 1 \end{bmatrix}$$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} -2\\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} 3\\ 1 \end{bmatrix}$$

Original Linear Dyanmics: Attractive
Line of Equilibria
$$x^2$$

$$\vec{\mathbf{x}}' = B\vec{\mathbf{x}}, B = \begin{bmatrix} -3.09 & -6.21 \\ -0.96 & -1.76 \end{bmatrix}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

Example 2 (b).

-2

-3]

$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}, A = \begin{bmatrix} -3 & -6 \\ -1 & -2 \end{bmatrix}$$
Eigenvalues & eigenvectors:

$$\lambda_1 = \mathbf{0}, \vec{\mathbf{u}}_1 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$\lambda_2 = -5, \vec{\mathbf{u}}_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
General solutions:

$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\mathbf{A}_2 \approx -4.95, \vec{\mathbf{u}}_2 \approx \begin{bmatrix} 3.33 \\ 1 \end{bmatrix}$$
General solutions:

$$\vec{\mathbf{x}}(t) = C_1 e^{0.1t} \begin{bmatrix} -1.95 \\ 1 \end{bmatrix} + C_2 e^{-4.950t} \begin{bmatrix} 3.22 \\ 1 \end{bmatrix}$$
Another Perturbed Linear Dynamics:

$$\mathbf{Saddle}$$

$$\mathbf{A}_2 \approx -4.95, \vec{\mathbf{u}}_2 \approx \begin{bmatrix} 3.33 \\ 1 \end{bmatrix}$$

$$\mathbf{A}_2 \approx -4.95, \vec{\mathbf{u}}_2 \approx \begin{bmatrix} 3.33 \\ 1 \end{bmatrix}$$

$$\mathbf{A}_2 \approx -4.95, \vec{\mathbf{u}}_2 \approx \begin{bmatrix} 3.33 \\ 1 \end{bmatrix}$$

$$\mathbf{A}_2 \approx -4.95, \vec{\mathbf{u}}_2 \approx \begin{bmatrix} 3.33 \\ 1 \end{bmatrix}$$

$$\mathbf{A}_1 \approx 0.1, \vec{\mathbf{u}}_1 \approx \begin{bmatrix} -1.95 \\ 1 \end{bmatrix} + C_2 e^{-4.950t} \begin{bmatrix} 3.22 \\ 1 \end{bmatrix}$$

$$\mathbf{A}_2 \approx -4.95, \vec{\mathbf{u}}_2 \approx \begin{bmatrix} 3.33 \\ 1 \end{bmatrix}$$

$$\mathbf{A}_2 \approx -4.95, \vec{\mathbf{u}}_2 \approx \begin{bmatrix} 3.33 \\ 1 \end{bmatrix}$$

$$\mathbf{A}_3 = C_1 e^{0.1t} \begin{bmatrix} -1.95 \\ 1 \end{bmatrix} + C_2 e^{-4.950t} \begin{bmatrix} 3.22 \\ 1 \end{bmatrix}$$

-2

0

-1

-2 -

-3 J

< □ >

2

Example 3 (a).

$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}, \ A = \begin{bmatrix} 1 & 5/2 \\ -2 & -1 \end{bmatrix}$$

Eigenvalues: $\lambda_{1,2} = \pm 2i$

Original Linear Dynamics:

Example 3 (a).

$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}, \ A = \begin{bmatrix} 1 & 5/2 \\ -2 & -1 \end{bmatrix}$$
 $\vec{\mathbf{x}}' = B\vec{\mathbf{x}}, \ B = \begin{bmatrix} 1.04 & 2.51 \\ -2.01 & -0.95 \end{bmatrix}$

Eigenvalues: $\lambda_{1,2} = \pm 2i$

Original Linear Dynamics:

Example 3 (a).

$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}, \ A = \begin{bmatrix} 1 & 5/2 \\ -2 & -1 \end{bmatrix}$$

Eigenvalues:

 $\lambda_{1,2} = \pm 2i$

Original Linear Dynamics: Center

$$\vec{\mathbf{x}}' = B\vec{\mathbf{x}}, B = \begin{bmatrix} 1.04 & 2.51\\ -2.01 & -0.95 \end{bmatrix}$$

Eigenvalues:
$$\lambda_{1,2} \approx 0.045 \pm 2.014 i$$

Example 3 (b).

$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}, \ A = \begin{bmatrix} 1 & 5/2 \\ -2 & -1 \end{bmatrix}$$

Eigenvalues: $\lambda_{1,2} = \pm 2i$

Original Linear Dynamics:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇ ◇ ◇

Example 3 (b).

$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}, A = \begin{bmatrix} 1 & 5/2 \\ -2 & -1 \end{bmatrix}$$
 $\vec{\mathbf{x}}' = B\vec{\mathbf{x}}, B = \begin{bmatrix} 0.97 & 2.51 \\ -1.99 & -1.02 \end{bmatrix}$

Eigenvalues: $\lambda_{1,2} = \pm 2i$

Original Linear Dynamics:

Example 3 (b).

$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}, \ A = \begin{bmatrix} 1 & 5/2 \\ -2 & -1 \end{bmatrix}$$

Eigenvalues:

 $\lambda_{1,2} = \pm 2i$

Original Linear Dynamics: Center

$$\vec{\mathbf{x}}' = B\vec{\mathbf{x}}, B = \begin{bmatrix} 0.97 & 2.51 \\ -1.99 & -1.02 \end{bmatrix}$$

Eigenvalues:
$$\lambda_{1,2} \approx -0.025 \pm 2.001 i$$

The Morals of the Story:

"Neutral" eigenvalues ($\lambda = 0$ or $\operatorname{Re} \lambda = 0$) are the sources of structural instability.

> If the system has neutral eigenvalues, a tiny change in the diff eqs may alter the phase portrait completely.

Other "non-neutral" eigenvalues give **structural stable** dynamics.

If the system has no neutral eigenvalues, small changes in diff eqs will not change the dynamics radically & will only give an equivalent phase portrait.

<ロト < 回 > < 回 > < 回 > < 回 > = □ > = □ = □

SQ (V

Theorem 1. If A has a neutral eigenvalue ($\lambda = 0$ or $\operatorname{Re} \lambda = 0$), then the dynamics are sensitive to the coeff. perturbations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

In this case, for some matrices $B \approx A$,

Theorem 1. If A has a neutral eigenvalue ($\lambda = 0$ or $\operatorname{Re} \lambda = 0$), then the dynamics are sensitive to the coeff. perturbations.

In this case, for some matrices $B \approx A$,

Theorem 2. If all eigenvalues of A have nonzero real parts, then the dynamics are robust to the coefficient perturbations.

In this case, for any matrix $B \approx A$,

Theorem 1. If A has a neutral eigenvalue ($\lambda = 0$ or $\operatorname{Re} \lambda = 0$), then the dynamics are sensitive to the coeff. perturbations.

In this case, for some matrices $B \approx A$,

Theorem 2. If all eigenvalues of A have nonzero real parts, then the dynamics are robust to the coefficient perturbations.

In this case, for any matrix $B \approx A$,

the dynamics of	are essentially	the dynamics of
$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$	equivalent to	$\vec{\mathbf{x}}' = B\vec{\mathbf{x}}$

Theorem 3. If all eigenvalues of A have real parts < 0, then the equilibrium is asymp. stable not only for $\vec{x}' = A\vec{x}$, but is also asymp. stable for $\vec{x}' = B\vec{x}$ for all $B \approx A$.

Theorem 1. If A has a neutral eigenvalue ($\lambda = 0$ or $\operatorname{Re} \lambda = 0$), then the dynamics are sensitive to the coeff. perturbations.

In this case, for some matrices $B \approx A$,

Theorem 2. If all eigenvalues of A have nonzero real parts, then the dynamics are robust to the coefficient perturbations.

In this case, for any matrix $B \approx A$,

the dynamics of	are essentially	the dynamics of
$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$	equivalent to	$\vec{\mathbf{x}}' = B\vec{\mathbf{x}}$

Theorem 3. If all eigenvalues of A have real parts < 0, then the equilibrium is asymp. stable not only for $\vec{x}' = A\vec{x}$, but is also asymp. stable for $\vec{x}' = B\vec{x}$ for all $B \approx A$.

Theorem 4. If at least one eigenvalue of A has real part > 0, then the equilibrium is unstable not only for $\vec{x}' = A\vec{x}$, but is also unstable for $\vec{x}' = B\vec{x}$ for all $B \approx A$.

If all eigenvalues of A have nonzero real parts, then the local dynamics are robust to nonlinear perturbations.

If all eigenvalues of A have nonzero real parts, then the local dynamics are robust to nonlinear perturbations.

In this case, for $\vec{\mathbf{f}}(\vec{\mathbf{x}}) \approx A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ for $\vec{\mathbf{x}} \approx \vec{\mathbf{a}}$,

the local	dy	namio	\mathbf{CS}	of	
$\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} - $	$\vec{\mathbf{a}}$)	near	$\vec{\mathbf{x}}$	\approx	$\vec{\mathbf{a}}$

are essentially equivalent to the local dynamics of $\vec{\mathbf{x}}' = \vec{\mathbf{f}}(\vec{\mathbf{x}}) \text{ near } \vec{\mathbf{x}} \approx \vec{\mathbf{a}}$

If all eigenvalues of A have nonzero real parts, then the local dynamics are robust to nonlinear perturbations.

In this case, for $\vec{\mathbf{f}}(\vec{\mathbf{x}}) \approx A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ for $\vec{\mathbf{x}} \approx \vec{\mathbf{a}}$,

the local dyn	namics of
$\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$	near $\vec{\mathbf{x}} \approx \vec{\mathbf{a}}$

are essentially equivalent to the local dynamics of $\vec{\mathbf{x}}' = \vec{\mathbf{f}}(\vec{\mathbf{x}})$ near $\vec{\mathbf{x}} \approx \vec{\mathbf{a}}$

If A has a neutral eigenvalue, then the local dynamics are sensitive to nonlin. perturbations.

If all eigenvalues of A have nonzero real parts, then the local dynamics are robust to nonlinear perturbations.

In this case, for $\vec{\mathbf{f}}(\vec{\mathbf{x}}) \approx A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ for $\vec{\mathbf{x}} \approx \vec{\mathbf{a}}$,

the local dynamics of	f
$\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} - \vec{\mathbf{a}}) \text{ near } \vec{\mathbf{x}} \approx \vec{\mathbf{a}}$	$pprox ec{\mathbf{a}}$

are essentially equivalent to the local dynamics of $\vec{\mathbf{x}}' = \vec{\mathbf{f}}(\vec{\mathbf{x}}) \text{ near } \vec{\mathbf{x}} \approx \vec{\mathbf{a}}$

If A has a neutral eigenvalue, then the local dynamics are sensitive to nonlin. perturbations.

In this case, for $\vec{\mathbf{f}}(\vec{\mathbf{x}}) \approx A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ for $\vec{\mathbf{x}} \approx \vec{\mathbf{a}}$,

the local dynamics of $\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} - \vec{\mathbf{a}}) \text{ near } \vec{\mathbf{x}} \approx \vec{\mathbf{a}}$ may be radically different from the local dynamics of $\vec{\mathbf{x}}' = \vec{\mathbf{f}}(\vec{\mathbf{x}}) \text{ near } \vec{\mathbf{x}} \approx \vec{\mathbf{a}}$

If all eigenvalues of A have nonzero real parts, then the local dynamics are robust to nonlinear perturbations.

In this case, for $\vec{\mathbf{f}}(\vec{\mathbf{x}}) \approx A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ for $\vec{\mathbf{x}} \approx \vec{\mathbf{a}}$,

the local dy	namics of
$\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$	near $\vec{\mathbf{x}} \approx \vec{\mathbf{a}}$

are essentially equivalent to the local dynamics of $\vec{\mathbf{x}}' = \vec{\mathbf{f}}(\vec{\mathbf{x}}) \text{ near } \vec{\mathbf{x}} \approx \vec{\mathbf{a}}$

If A has a neutral eigenvalue, then the local dynamics are sensitive to nonlin. perturbations.

In this case, for $\vec{\mathbf{f}}(\vec{\mathbf{x}}) \approx A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ for $\vec{\mathbf{x}} \approx \vec{\mathbf{a}}$,

the local dynamics of	may be radically	the local dynamics of
$\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ near $\vec{\mathbf{x}} \approx \vec{\mathbf{a}}$	different from	$\vec{\mathbf{x}}' = \vec{\mathbf{f}}(\vec{\mathbf{x}})$ near $\vec{\mathbf{x}} \approx \vec{\mathbf{a}}$

If all eigenvalues of A have real parts < 0, then $\vec{\mathbf{x}} = \vec{\mathbf{a}}$ is asymp. stable for $\vec{\mathbf{x}}' = \vec{\mathbf{f}}(\vec{\mathbf{x}})$ as long as $\vec{\mathbf{f}}(\vec{\mathbf{x}}) \approx A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ near $\vec{\mathbf{x}} \approx \vec{\mathbf{a}}$.
Nonlinear Perturbation Theorems:

If all eigenvalues of A have nonzero real parts, then the local dynamics are robust to nonlinear perturbations.

In this case, for $\vec{\mathbf{f}}(\vec{\mathbf{x}}) \approx A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ for $\vec{\mathbf{x}} \approx \vec{\mathbf{a}}$,

the local dynamics of		
$\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$	near $\vec{\mathbf{x}} \approx \vec{\mathbf{a}}$	

are essentially equivalent to the local dynamics of $\vec{\mathbf{x}}' = \vec{\mathbf{f}}(\vec{\mathbf{x}})$ near $\vec{\mathbf{x}} \approx \vec{\mathbf{a}}$

If A has a neutral eigenvalue, then the local dynamics are sensitive to nonlin. perturbations.

In this case, for $\vec{\mathbf{f}}(\vec{\mathbf{x}}) \approx A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ for $\vec{\mathbf{x}} \approx \vec{\mathbf{a}}$,

the local dynamics of	may be radically	the local dynamics of
$\vec{\mathbf{x}}' = A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ near $\vec{\mathbf{x}} \approx \vec{\mathbf{a}}$	different from	$\vec{\mathbf{x}}' = \vec{\mathbf{f}}(\vec{\mathbf{x}}) \text{ near } \vec{\mathbf{x}} \approx \vec{\mathbf{a}}$

If all eigenvalues of A have real parts < 0, then $\vec{\mathbf{x}} = \vec{\mathbf{a}}$ is asymp. stable for $\vec{\mathbf{x}}' = \vec{\mathbf{f}}(\vec{\mathbf{x}})$ as long as $\vec{\mathbf{f}}(\vec{\mathbf{x}}) \approx A(\vec{\mathbf{x}} - \vec{\mathbf{a}})$ near $\vec{\mathbf{x}} \approx \vec{\mathbf{a}}$.

If at least one eigenvalue of A has real part > 0, then $\vec{x} = \vec{a}$ is unstable for $\vec{x}' = \vec{f}(\vec{x})$ as long as $\vec{f}(\vec{x}) \approx A(\vec{x} - \vec{a})$ near $\vec{x} \approx \vec{a}$.

Near the equilibrium (0,0): The perturbation terms are almost negligible & the two phase portraits are **locally** equivalent.

Near the equilibrium (0,0): The perturbation terms are almost negligible & the two phase portraits are **locally** equivalent.

Far from (0,0): The red terms are no longer small. The two phase portraits are globally non-equivalent.

The Linear Approximating System near an equilibrium

$$\vec{\mathbf{x}}' = \vec{\mathbf{f}}(\vec{\mathbf{x}}) \qquad \begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{bmatrix}.$$

Find equilibria, by solving $\vec{\mathbf{f}}(\vec{\mathbf{x}}) = 0$, that is, $\begin{cases} f_1(x_1, x_2) = 0 \\ f_2(x_1, x_2) = 0 \end{cases}$

Find equilibria, by solving $\vec{\mathbf{f}}(\vec{\mathbf{x}}) = 0$, that is, $\begin{cases} f_1(x_1, x_2) = 0 \\ f_2(x_1, x_2) = 0 \end{cases}$

▶ Near an equilibria
$$\vec{\mathbf{a}} = (a_1, a_2)$$
, take a linear approximation:

•
$$f_1(x_1, x_2) \approx f_1(a_1, a_2) + \frac{\partial f_1}{\partial x_1}(a_1, a_2)(x_1 - a_1) + \frac{\partial f_1}{\partial x_2}(a_1, a_2)(x_2 - a_2)$$

Find equilibria, by solving $\vec{\mathbf{f}}(\vec{\mathbf{x}}) = 0$, that is, $\begin{cases} f_1(x_1, x_2) = 0 \\ f_2(x_1, x_2) = 0 \end{cases}$

•
$$f_1(x_1, x_2) \approx \frac{\partial f_1}{\partial x_1}(a_1, a_2)(x_1 - a_1) + \frac{\partial f_1}{\partial x_2}(a_1, a_2)(x_2 - a_2)$$

Find equilibria, by solving $\vec{\mathbf{f}}(\vec{\mathbf{x}}) = 0$, that is, $\begin{cases} f_1(x_1, x_2) = 0 \\ f_2(x_1, x_2) = 0 \end{cases}$

•
$$f_1(x_1, x_2) \approx \frac{\partial f_1}{\partial x_1}(a_1, a_2)(x_1 - a_1) + \frac{\partial f_1}{\partial x_2}(a_1, a_2)(x_2 - a_2)$$

•
$$f_2(x_1, x_2) \approx$$

 $f_2(a_1, a_2) + \frac{\partial f_2}{\partial x_1}(a_1, a_2)(x_1 - a_1) + \frac{\partial f_2}{\partial x_2}(a_1, a_2)(x_2 - a_2)$

Find equilibria, by solving $\vec{\mathbf{f}}(\vec{\mathbf{x}}) = 0$, that is, $\begin{cases} f_1(x_1, x_2) = 0 \\ f_2(x_1, x_2) = 0 \end{cases}$

•
$$f_1(x_1, x_2) \approx \frac{\partial f_1}{\partial x_1}(a_1, a_2)(x_1 - a_1) + \frac{\partial f_1}{\partial x_2}(a_1, a_2)(x_2 - a_2)$$

•
$$f_2(x_1, x_2) \approx \frac{\partial f_2}{\partial x_1}(a_1, a_2)(x_1 - a_1) + \frac{\partial f_2}{\partial x_2}(a_1, a_2)(x_2 - a_2)$$

Find equilibria, by solving $\vec{\mathbf{f}}(\vec{\mathbf{x}}) = 0$, that is, $\begin{cases} f_1(x_1, x_2) = 0 \\ f_2(x_1, x_2) = 0 \end{cases}$

•
$$f_1(x_1, x_2) \approx \frac{\partial f_1}{\partial x_1}(a_1, a_2)(x_1 - a_1) + \frac{\partial f_1}{\partial x_2}(a_1, a_2)(x_2 - a_2)$$

•
$$f_2(x_1, x_2) \approx \frac{\partial f_2}{\partial x_1}(a_1, a_2)(x_1 - a_1) + \frac{\partial f_2}{\partial x_2}(a_1, a_2)(x_2 - a_2)$$

• The linear approx system near equilibrium
$$(a_1, a_2)$$
 is:

$$x'_1 = \frac{\partial f_1}{\partial x_1}(a_1, a_2)(x_1 - a_1) + \frac{\partial f_1}{\partial x_2}(a_1, a_2)(x_2 - a_2)$$

$$x'_2 = \frac{\partial f_2}{\partial x_1}(a_1, a_2)(x_1 - a_1) + \frac{\partial f_2}{\partial x_2}(a_1, a_2)(x_2 - a_2)$$

Find equilibria, by solving $\vec{\mathbf{f}}(\vec{\mathbf{x}}) = 0$, that is, $\begin{cases} f_1(x_1, x_2) = 0 \\ f_2(x_1, x_2) = 0 \end{cases}$

▶ Near an equilibria $\vec{\mathbf{a}} = (a_1, a_2)$, take a linear approximation:

•
$$f_1(x_1, x_2) \approx \frac{\partial f_1}{\partial x_1}(a_1, a_2)(x_1 - a_1) + \frac{\partial f_1}{\partial x_2}(a_1, a_2)(x_2 - a_2)$$

•
$$f_2(x_1, x_2) \approx \frac{\partial f_2}{\partial x_1}(a_1, a_2)(x_1 - a_1) + \frac{\partial f_2}{\partial x_2}(a_1, a_2)(x_2 - a_2)$$

• The linear approx system near equilibrium
$$(a_1, a_2)$$
 is:
 $x'_1 = \frac{\partial f_1}{\partial x_1}(a_1, a_2)(x_1 - a_1) + \frac{\partial f_1}{\partial x_2}(a_1, a_2)(x_2 - a_2)$
 $x'_2 = \frac{\partial f_2}{\partial x_1}(a_1, a_2)(x_1 - a_1) + \frac{\partial f_2}{\partial x_2}(a_1, a_2)(x_2 - a_2)$

• Or, equivalently, the linear approx system is:

 $\vec{\mathbf{x}}' = J(\vec{\mathbf{x}} - \vec{\mathbf{a}}),$ where $J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(a_1, a_2) & \frac{\partial f_1}{\partial x_2}(a_1, a_2) \\ \frac{\partial f_2}{\partial x_1}(a_1, a_2) & \frac{\partial f_2}{\partial x_2}(a_1, a_2) \end{bmatrix}$ is the Jacobian matrix.

Example 5.

$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1 x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1 x_2 \end{cases}$

- ▶ Find all equilibria.
- For each equilibrium, give the linear approximating system near it.
- ▶ Sketch the phase portrait of the linear approximating system.
- Determine whether each equilibrium is stable or unstable with respect to the nonlinear system.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \qquad \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

• Find equilibria, by solving $\vec{\mathbf{f}}(\vec{\mathbf{x}}) = 0$, that is, $\begin{cases} f_1(x_1, x_2) = 0 \\ f_2(x_1, x_2) = 0 \end{cases}$

$$\begin{bmatrix} x_1'\\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2\\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2\\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

• Find equilibria, by solving $\vec{\mathbf{f}}(\vec{\mathbf{x}}) = 0$, that is, $\begin{cases} f_1(x_1, x_2) = 0\\ f_2(x_1, x_2) = 0 \end{cases}$
 $\begin{cases} (1) & -x_1 - x_2 = 0\\ (2) & x_1 - 7x_2 + x_2^2 - 3x_1x_2 = 0 \end{cases}$

$$\begin{bmatrix} x_1'\\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2\\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2\\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

• Find equilibria, by solving $\vec{\mathbf{f}}(\vec{\mathbf{x}}) = 0$, that is, $\begin{cases} f_1(x_1, x_2) = 0\\ f_2(x_1, x_2) = 0 \end{cases}$
 $\begin{cases} (1) & -x_1 - x_2 = 0\\ (2) & x_1 - 7x_2 + x_2^2 - 3x_1x_2 = 0 \end{cases}$
From (1), $x_2 = -x_1$.
Substitute this in (2): $8x_1 + 4x_1^2 = 0 \Rightarrow x_1 = 0$, or $x_1 = -2$.

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

• Find equilibria, by solving $\vec{\mathbf{f}}(\vec{\mathbf{x}}) = 0$, that is, $\begin{cases} f_1(x_1, x_2) = 0 \\ f_2(x_1, x_2) = 0 \end{cases}$
 $\begin{cases} (1) & -x_1 - x_2 = 0 \\ (2) & x_1 - 7x_2 + x_2^2 - 3x_1x_2 = 0 \end{cases}$
From (1), $x_2 = -x_1$.
Substitute this in (2): $8x_1 + 4x_1^2 = 0 \Rightarrow x_1 = 0$, or $x_1 = -2$.
Combined with $x_2 = -x_1$:

$$\Rightarrow$$
 Two equilibria: $(x_1, x_2) = (0, 0), (x_1, x_2) = (-2, 2).$

▲□▶ ▲□▶ ▲■▶ ▲■▶ ▲■ シ۹00

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

• Two equilibria: $(x_1, x_2) = (0, 0), (x_1, x_2) = (-2, 2).$

• Calculate the Jacobian matrix

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 1 - 3x_2 & -7 - 3x_1 + 2x_2 \end{bmatrix}$$

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

• Two equilibria: $(x_1, x_2) = (0, 0), (x_1, x_2) = (-2, 2).$

• Calculate the Jacobian matrix

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 1 - 3x_2 & -7 - 3x_1 + 2x_2 \end{bmatrix}$$

• Near the equilibrium (0,0), construct a linear approx. system:

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

• Two equilibria: $(x_1, x_2) = (0, 0), (x_1, x_2) = (-2, 2).$

• Calculate the Jacobian matrix

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 1 - 3x_2 & -7 - 3x_1 + 2x_2 \end{bmatrix}$$

• Near the equilibrium (0,0), construct a linear approx. system:

• Evaluate
$$J$$
 at equilibrium $(x_1, x_2) = (0, 0)$: $J = \begin{bmatrix} -1 & -1 \\ 1 & -7 \end{bmatrix}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = の�?

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

• Two equilibria: $(x_1, x_2) = (0, 0), (x_1, x_2) = (-2, 2).$

• Calculate the Jacobian matrix

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 1 - 3x_2 & -7 - 3x_1 + 2x_2 \end{bmatrix}$$

- Near the equilibrium (0,0), construct a linear approx. system:
 - Evaluate J at equilibrium $(x_1, x_2) = (0, 0)$: $J = \begin{vmatrix} -1 & -1 \\ 1 & -7 \end{vmatrix}$
 - The linear approximating system near (0,0) is:

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 1 & -7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

• Two equilibria: $(x_1, x_2) = (0, 0), (x_1, x_2) = (-2, 2).$

• Linear approx system near (0,0): $\vec{\mathbf{x}}' = \begin{bmatrix} -1 & -1 \\ 1 & -7 \end{bmatrix} \vec{\mathbf{x}}$

• Eigenvalues & eigenvectors:

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1 x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1 x_2 \end{cases}$$

• Two equilibria: $(x_1, x_2) = (0, 0), (x_1, x_2) = (-2, 2).$

• Linear approx system near (0,0): $\vec{\mathbf{x}}' = \begin{bmatrix} -1 & -1 \\ 1 & -7 \end{bmatrix} \vec{\mathbf{x}}$

$$\lambda_{1} = -4 + 2\sqrt{2} < 0, \ \vec{\mathbf{u}}_{1} = \begin{bmatrix} 3 + 2\sqrt{2} \\ 1 \end{bmatrix},$$
$$\lambda_{2} = -4 - 2\sqrt{2} < 0, \ \vec{\mathbf{u}}_{2} = \begin{bmatrix} 3 - 2\sqrt{2} \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

• Two equilibria: $(x_1, x_2) = (0, 0), (x_1, x_2) = (-2, 2).$

• Linear approx system near (0,0): $\vec{\mathbf{x}}' = \begin{bmatrix} -1 & -1 \\ 1 & -7 \end{bmatrix} \vec{\mathbf{x}}$

• Eigenvalues & eigenvectors:

$$\lambda_1 = -4 + 2\sqrt{2} < 0, \quad \vec{\mathbf{u}}_1 = \begin{bmatrix} 3+2\sqrt{2} \\ 1 \end{bmatrix}, \quad \lambda_2 = -4 - 2\sqrt{2} < 0, \quad \vec{\mathbf{u}}_2 = \begin{bmatrix} 3-2\sqrt{2} \\ 1 \end{bmatrix},$$

• Thus, (0,0) is an attractive node & is asymptotically stable in the linear dynamics.

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

• Two equilibria: $(x_1, x_2) = (0, 0), (x_1, x_2) = (-2, 2).$

• Linear approx system near (0,0): $\vec{\mathbf{x}}' = \begin{bmatrix} -1 & -1 \\ 1 & -7 \end{bmatrix} \vec{\mathbf{x}}$

• Eigenvalues & eigenvectors:

$$\lambda_1 = -4 + 2\sqrt{2} < 0, \quad \vec{\mathbf{u}}_1 = \begin{bmatrix} 3+2\sqrt{2} \\ 1 \end{bmatrix}, \quad \lambda_2 = -4 - 2\sqrt{2} < 0, \quad \vec{\mathbf{u}}_2 = \begin{bmatrix} 3-2\sqrt{2} \\ 1 \end{bmatrix},$$

• Thus, (0,0) is an attractive node & is asymptotically stable in the linear dynamics.

• Since the eigenvalues are not neutral, the nonlinear dynamics are equivalent to the linear dynamics near (0,0).

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

• Two equilibria: $(x_1, x_2) = (0, 0), (x_1, x_2) = (-2, 2).$

• Linear approx system near (0,0): $\vec{\mathbf{x}}' = \begin{bmatrix} -1 & -1 \\ 1 & -7 \end{bmatrix} \vec{\mathbf{x}}$

• Eigenvalues & eigenvectors:

$$\lambda_1 = -4 + 2\sqrt{2} < 0, \quad \vec{\mathbf{u}}_1 = \begin{bmatrix} 3+2\sqrt{2} \\ 1 \end{bmatrix}, \quad \lambda_2 = -4 - 2\sqrt{2} < 0, \quad \vec{\mathbf{u}}_2 = \begin{bmatrix} 3-2\sqrt{2} \\ 1 \end{bmatrix},$$

• Thus, (0,0) is an attractive node & is asymptotically stable in the linear dynamics.

- Since the eigenvalues are not neutral, the nonlinear dynamics are equivalent to the linear dynamics near (0,0).
- Equilibrium (0,0) is asymptotically stable with respect to the original nonlinear system.

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \qquad \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

• Evaluate
$$J$$
 at $(x_1, x_2) = (-2, 2)$: $J = \begin{bmatrix} -1 & -1 \\ -5 & 3 \end{bmatrix}$

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

• Evaluate
$$J$$
 at $(x_1, x_2) = (-2, 2)$: $J = \begin{bmatrix} -1 & -1 \\ -5 & 3 \end{bmatrix}$

• Linear approx system near
$$(-2, 2)$$
: $\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} x_1 + 2 \\ x_2 - 2 \end{bmatrix}$

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

• Two equilibria: $(x_1, x_2) = (0, 0), (x_1, x_2) = (-2, 2).$

- Evaluate J at $(x_1, x_2) = (-2, 2)$: $J = \begin{bmatrix} -1 & -1 \\ -5 & 3 \end{bmatrix}$
- Linear approx system near (-2, 2): $\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} x_1 + 2 \\ x_2 2 \end{bmatrix}$

$$\lambda_1 = 4, \ \vec{\mathbf{u}}_1 = \begin{bmatrix} -1/5\\1 \end{bmatrix},$$
$$\lambda_2 = -2, \ \vec{\mathbf{u}}_2 = \begin{bmatrix} 1\\1 \end{bmatrix}$$

• Eigenvalues & eigenvectors:

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

• Two equilibria: $(x_1, x_2) = (0, 0), (x_1, x_2) = (-2, 2).$

- Evaluate J at $(x_1, x_2) = (-2, 2)$: $J = \begin{bmatrix} -1 & -1 \\ -5 & 3 \end{bmatrix}$
- Linear approx system near (-2, 2): $\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} x_1 + 2 \\ x_2 2 \end{bmatrix}$

• Eigenvalues & eigenvectors:

$$\lambda_1 = 4, \ \vec{\mathbf{u}}_1 = \begin{bmatrix} -1/5\\1 \end{bmatrix}, \\ \lambda_2 = -2, \ \vec{\mathbf{u}}_2 = \begin{bmatrix} 1\\1 \end{bmatrix}$$

• Thus, (-2, 2) is a saddle & is unstable in the linear dynamics.

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

• Two equilibria: $(x_1, x_2) = (0, 0), (x_1, x_2) = (-2, 2).$

- Evaluate J at $(x_1, x_2) = (-2, 2)$: $J = \begin{bmatrix} -1 & -1 \\ -5 & 3 \end{bmatrix}$
- Linear approx system near (-2, 2): $\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} x_1 + 2 \\ x_2 2 \end{bmatrix}$

• Eigenvalues & eigenvectors:

$$\lambda_1 = 4, \ \vec{\mathbf{u}}_1 = \begin{bmatrix} -1/5\\1\\\end{bmatrix}$$

$$\lambda_2 = -2, \ \vec{\mathbf{u}}_2 = \begin{bmatrix} 1\\1\\\end{bmatrix}$$

• Thus, (-2, 2) is a saddle & is unstable in the linear dynamics.

• Since the eigenvalues are not neutral, the nonlinear dynamics are equivalent to the linear dynamics near (-2, 2).

,
Example 5. Dynamics near (-2, 2).

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -x_1 - x_2 \\ x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = -x_1 - x_2 \\ f_2(x_1, x_2) = x_1 - 7x_2 + x_2^2 - 3x_1x_2 \end{cases}$$

• Two equilibria: $(x_1, x_2) = (0, 0), (x_1, x_2) = (-2, 2).$

- Evaluate J at $(x_1, x_2) = (-2, 2)$: $J = \begin{bmatrix} -1 & -1 \\ -5 & 3 \end{bmatrix}$
- Linear approx system near (-2, 2): $\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} x_1 + 2 \\ x_2 2 \end{bmatrix}$

• Eigenvalues & eigenvectors:
$$\lambda_1 = 4, \ \vec{\mathbf{u}}_1 = \begin{bmatrix} -1/5\\1 \end{bmatrix}, \\ \lambda_2 = -2, \ \vec{\mathbf{u}}_2 = \begin{bmatrix} 1\\1 \end{bmatrix}$$

• Thus, (-2, 2) is a saddle & is unstable in the linear dynamics.

• Since the eigenvalues are not neutral, the nonlinear dynamics are equivalent to the linear dynamics near (-2, 2).

• Equilibrium (-2, 2) is also a saddle with respect to the original nonlinear system & it is unstable.

Example 5. Since all the eigenvalues are non-neutral, Linear approx dynamics \Rightarrow Nonlinear local dynamics near equilibria

Example 5. Since all the eigenvalues are non-neutral, Linear approx dynamics \Rightarrow Nonlinear local dynamics near equilibria

Example 5. Global phase portrait of the nonlinear system

Example 5. Global phase portrait of the nonlinear system

Example 6 (Neutral Eigenvalue)

$$\begin{cases} x_1' = 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ x_2' = -x_2 + x_1^2 \end{cases}$$

- ▶ Find all equilibria.
- For each equilibrium, give the linear approximating system near it.
- Sketch the phase portrait of the linear approximating system.
- Determine whether each equilibrium is stable or unstable with respect to the nonlinear system.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = の�?

$$\begin{cases} x_1' = 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ x_2' = -x_2 + x_1^2 \end{cases}$$

$$\begin{cases} x_1' = 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ x_2' = -x_2 + x_1^2 \end{cases}$$

• Find equilibria, by solving $\vec{\mathbf{f}}(\vec{\mathbf{x}}) = 0$, that is, $\begin{cases} f_1(x_1, x_2) = 0 \\ f_2(x_1, x_2) = 0 \end{cases}$

$$\begin{cases} x_1' = 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ x_2' = -x_2 + x_1^2 \end{cases}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Find equilibria, by solving $\vec{\mathbf{f}}(\vec{\mathbf{x}}) = 0$, that is, $\begin{cases} f_1(x_1, x_2) = 0 \\ f_2(x_1, x_2) = 0 \end{cases}$ $\begin{cases} (1) & 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 = 0 \\ (2) & -x_2 + x_1^2 = 0 \end{cases}$

$$\begin{cases} x_1' = 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ x_2' = -x_2 + x_1^2 \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

• Find equilibria, by solving $\vec{\mathbf{f}}(\vec{\mathbf{x}}) = 0$, that is, $\begin{cases} f_1(x_1, x_2) = 0\\ f_2(x_1, x_2) = 0 \end{cases}$ $\begin{cases} (1) & 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 = 0\\ (2) & -x_2 + x_1^2 = 0 \end{cases}$ From (2), $x_2 = x_1^2$. Substitute this in (1): $x_1^3 + x_1^4 + x_1^5 = 0 \Rightarrow x_1^3(1 + x_1 + x_1^2) = 0 \Rightarrow x_1 = 0$

$$\begin{cases} x_1' = 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ x_2' = -x_2 + x_1^2 \end{cases}$$

• Find equilibria, by solving $\vec{\mathbf{f}}(\vec{\mathbf{x}}) = 0$, that is, $\begin{cases} f_1(x_1, x_2) = 0\\ f_2(x_1, x_2) = 0 \end{cases}$ $\begin{cases} (1) & 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 = 0\\ (2) & -x_2 + x_1^2 = 0 \end{cases}$ From (2), $x_2 = x_1^2$. Substitute this in (1): $x_1^3 + x_1^4 + x_1^5 = 0 \Rightarrow x_1^3(1 + x_1 + x_1^2) = 0 \Rightarrow x_1 = 0$ From $x_2 = x_1^2$ it follows $x_2 = 0$. \Rightarrow **Only one equilibrium:** $(x_1, x_2) = (0, 0)$.

Linear approx sys near the equilibrium (0,0).

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ -x_2 + x_1^2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ f_2(x_1, x_2) = -x_2 + x_1^2 \end{cases}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Linear approx sys near the equilibrium (0,0).

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ -x_2 + x_1^2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ f_2(x_1, x_2) = -x_2 + x_1^2 \end{cases}$$

Calculate the Jacobian matrix

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_2 - 3x_1^2 + 5x_1^4 & 2x_1 + 2x_2 \\ 2x_1 & -1 \end{bmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ○ ○ ○

Linear approx sys near the equilibrium (0,0).

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ -x_2 + x_1^2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ f_2(x_1, x_2) = -x_2 + x_1^2 \end{cases}$$

Calculate the Jacobian matrix

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_2 - 3x_1^2 + 5x_1^4 & 2x_1 + 2x_2 \\ 2x_1 & -1 \end{bmatrix}$$

• Evaluate J at equilibrium $(x_1, x_2) = (0, 0)$: $J = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$

Linear approx sys near the equilibrium (0,0).

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ -x_2 + x_1^2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ f_2(x_1, x_2) = -x_2 + x_1^2 \end{cases}$$

Calculate the Jacobian matrix

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_2 - 3x_1^2 + 5x_1^4 & 2x_1 + 2x_2 \\ 2x_1 & -1 \end{bmatrix}$$

• Evaluate J at equilibrium $(x_1, x_2) = (0, 0)$: $J = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$

• The linear approximating system near (0,0) is:

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Linear Approximate Dynamics near (0,0).

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ -x_2 + x_1^2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ f_2(x_1, x_2) = -x_2 + x_1^2 \end{cases}$$

Linear approx system near the equilibrium (0, 0): $\vec{\mathbf{x}}' = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \vec{\mathbf{x}}$

Linear Approximate Dynamics near (0,0).

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ -x_2 + x_1^2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ f_2(x_1, x_2) = -x_2 + x_1^2 \end{cases}$$

Linear approx system near the equilibrium (0, 0): $\vec{\mathbf{x}}' = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \vec{\mathbf{x}}$

Eigenvalues & eigenvectors:

$$\begin{cases} \lambda_1 = 0, & \vec{\mathbf{u}}_1 = \begin{bmatrix} 1\\ 0 \end{bmatrix}, \\ \lambda_2 = -1 < 0, & \vec{\mathbf{u}}_2 = \begin{bmatrix} 0\\ 1 \end{bmatrix}\end{cases}$$

Linear Approximate Dynamics near (0,0).

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ -x_2 + x_1^2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ f_2(x_1, x_2) = -x_2 + x_1^2 \end{cases}$$

- Linear approx system near the equilibrium (0, 0): $\vec{\mathbf{x}}' = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \vec{\mathbf{x}}$
- Eigenvalues & eigenvectors: $\begin{cases} \lambda_1 = 0, & \vec{\mathbf{u}}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \\ \lambda_2 = -1 < 0, & \vec{\mathbf{u}}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}\end{cases}$
- Thus, the linear approximate dynamics has an attractive line of equilibria.

SQ (A)

Linear Approximate Dynamics near (0,0).

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ -x_2 + x_1^2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ f_2(x_1, x_2) = -x_2 + x_1^2 \end{cases}$$

Linear approx system near the equilibrium (0, 0): $\vec{\mathbf{x}}' = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \vec{\mathbf{x}}$

Eigenvalues & eigenvectors:

$$\begin{cases} \lambda_1 = 0, & \vec{\mathbf{u}}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \\ \lambda_2 = -1 < 0, & \vec{\mathbf{u}}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{cases}$$

- Thus, the linear approximate dynamics has an attractive line of equilibria.
- Since there is a neutral eigenvalue λ₁ = 0, it is possible that the nonlinear dynamics is non-equivalent to the linear dynamics near (0,0).

Linear Approximate Dynamics near (0,0).

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ -x_2 + x_1^2 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ f_2(x_1, x_2) = -x_2 + x_1^2 \end{cases}$$

- Linear approx system near the equilibrium (0, 0): $\vec{\mathbf{x}}' = \begin{vmatrix} 0 & 0 \\ 0 & -1 \end{vmatrix} \vec{\mathbf{x}}$
- Eigenvalues & eigenvectors: $\begin{cases} \lambda_1 = 0, & \vec{\mathbf{u}}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \\ \lambda_2 = -1 < 0, & \vec{\mathbf{u}}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}\end{cases}$

- Thus, the linear approximate dynamics has an attractive line of equilibria.
- Since there is a neutral eigenvalue λ₁ = 0, it is possible that the nonlinear dynamics is non-equivalent to the linear dynamics near (0,0).
- ▶ In other words, the linear analysis fails to determine the local nonlinear dynamics near (0,0).

Linear approx system for
$$(x_1, x_2) \approx (0, 0)$$
:
 $\vec{\mathbf{x}}' = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \vec{\mathbf{x}}$
Eigenvalues $\begin{cases} \lambda_1 = 0 \\ \lambda_2 = -1 < 0 \end{cases}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

The following is an *incomplete* list of the possible local phase portraits of the nonlinear system near (0, 0):

et cetera

To determine the correct picture, need advanced nonlinear theories: normal forms, center manifolds, \cdots .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ● ●

Linear approx system for $(x_1, x_2) \approx (0, 0)$:

$$\vec{\mathbf{x}}' = \begin{bmatrix} 0 & 0\\ 0 & -1 \end{bmatrix} \vec{\mathbf{x}}$$

Eigenvalues
$$\begin{cases} \lambda_1 = 0\\ \lambda_2 = -1 < 0 \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ○ ○ ○

Linear approx system for $(x_1, x_2) \approx (0, 0)$:

$$\vec{\mathbf{x}}' = \begin{bmatrix} 0 & 0\\ 0 & -1 \end{bmatrix} \vec{\mathbf{x}}$$

Eigenvalues
$$\begin{cases} \lambda_1 = 0\\ \lambda_2 = -1 < 0 \end{cases}$$

The actual local phase portrait of the nonlinear system near (0,0):

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ -x_2 + x_1^2 \end{bmatrix}$$

Linear approx system for $(x_1, x_2) \approx (0, 0)$:

$$\vec{\mathbf{x}}' = \begin{bmatrix} 0 & 0\\ 0 & -1 \end{bmatrix} \vec{\mathbf{x}}$$

Eigenvalues
$$\begin{cases} \lambda_1 = 0\\ \lambda_2 = -1 < 0 \end{cases}$$

The actual local phase portrait of the nonlinear system near (0, 0):

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 2x_1x_2 + x_2^2 - x_1^3 + x_1^5 \\ -x_2 + x_1^2 \end{bmatrix}$$

- Impossible to get this by the linear approximation alone.
- Advanced *nonlinear* tools (center manifolds, ...) can get us this picture.

Example 7 (Neutral Eigenvalue)

$$\begin{cases} x_1' = x_1 x_2 + \frac{1}{5} x_2^3 + x_1^4 \\ x_2' = x_2 + \frac{1}{2} x_1^3 \end{cases}$$

- Give the linear approximating system near the equilibrium (0,0). Sketch the phase portrait of the linear approx system.
- Determine whether (0,0) is stable or unstable with respect to the nonlinear system.
- Sketch the local phase portrait of the nonlinear system near (0,0)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$\begin{bmatrix} x_1'\\ x_2' \end{bmatrix} = \begin{bmatrix} x_1x_2 + \frac{1}{5}x_2^3 + x_1^4\\ x_2 + \frac{1}{2}x_1^3 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = x_1x_2 + \frac{1}{5}x_2^3 + x_1^4\\ f_2(x_1, x_2) = x_2 + \frac{1}{2}x_1^3 \end{cases}$$

$$\begin{bmatrix} x_1'\\ x_2' \end{bmatrix} = \begin{bmatrix} x_1x_2 + \frac{1}{5}x_2^3 + x_1^4\\ x_2 + \frac{1}{2}x_1^3 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = x_1x_2 + \frac{1}{5}x_2^3 + x_1^4\\ f_2(x_1, x_2) = x_2 + \frac{1}{2}x_1^3 \end{cases}$$

Calculate the Jacobian matrix

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} x_2 + 4x_1^3 & x_1 + \frac{3}{5}x_2^2 \\ \frac{3}{2}x_1^2 & 1 \end{bmatrix}$$

◆□▶ <□▶ < != > < != * ?</p>

$$\begin{bmatrix} x_1'\\ x_2' \end{bmatrix} = \begin{bmatrix} x_1x_2 + \frac{1}{5}x_2^3 + x_1^4\\ x_2 + \frac{1}{2}x_1^3 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = x_1x_2 + \frac{1}{5}x_2^3 + x_1^4\\ f_2(x_1, x_2) = x_2 + \frac{1}{2}x_1^3 \end{cases}$$

Calculate the Jacobian matrix

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} x_2 + 4x_1^3 & x_1 + \frac{3}{5}x_2^2 \\ \frac{3}{2}x_1^2 & 1 \end{bmatrix}$$

• Evaluate J at equilibrium $(x_1, x_2) = (0, 0)$: $J = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} x_1'\\ x_2' \end{bmatrix} = \begin{bmatrix} x_1x_2 + \frac{1}{5}x_2^3 + x_1^4\\ x_2 + \frac{1}{2}x_1^3 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = x_1x_2 + \frac{1}{5}x_2^3 + x_1^4\\ f_2(x_1, x_2) = x_2 + \frac{1}{2}x_1^3 \end{cases}$$

Calculate the Jacobian matrix

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} x_2 + 4x_1^3 & x_1 + \frac{3}{5}x_2^2 \\ \frac{3}{2}x_1^2 & 1 \end{bmatrix}$$

• Evaluate
$$J$$
 at equilibrium $(x_1, x_2) = (0, 0)$: $J = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

• The linear approximating system near (0,0) is:

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} x_1'\\ x_2' \end{bmatrix} = \begin{bmatrix} x_1x_2 + \frac{1}{5}x_2^3 + x_1^4\\ x_2 + \frac{1}{2}x_1^3 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = x_1x_2 + \frac{1}{5}x_2^3 + x_1^4\\ f_2(x_1, x_2) = x_2 + \frac{1}{2}x_1^3 \end{cases}$$

• Linear approx system near the equilibrium(0, 0): $\begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\begin{bmatrix} x_1'\\ x_2' \end{bmatrix} = \begin{bmatrix} x_1x_2 + \frac{1}{5}x_2^3 + x_1^4\\ x_2 + \frac{1}{2}x_1^3 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = x_1x_2 + \frac{1}{5}x_2^3 + x_1^4\\ f_2(x_1, x_2) = x_2 + \frac{1}{2}x_1^3 \end{cases}$$

Linear approx system near the equilibrium(0, 0): $\begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

► Eigenvalues & eigenvectors:

$$\begin{cases} \lambda_1 = 0, & \vec{\mathbf{u}}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \\ \lambda_2 = 1 > 0, & \vec{\mathbf{u}}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}\end{cases}$$

$$\begin{bmatrix} x_1'\\ x_2' \end{bmatrix} = \begin{bmatrix} x_1x_2 + \frac{1}{5}x_2^3 + x_1^4\\ x_2 + \frac{1}{2}x_1^3 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = x_1x_2 + \frac{1}{5}x_2^3 + x_1^4\\ f_2(x_1, x_2) = x_2 + \frac{1}{2}x_1^3 \end{cases}$$

Linear approx system near the equilibrium(0, 0): $\begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

► Eigenvalues & eigenvectors:

$$\lambda_1 = 0, \qquad \vec{\mathbf{u}}_1 = \begin{bmatrix} 1\\0 \end{bmatrix},$$
$$\lambda_2 = 1 > 0, \qquad \vec{\mathbf{u}}_2 = \begin{bmatrix} 0\\1 \end{bmatrix}$$

Thus, the linear approximate dynamics has a repulsive line of equilibria.

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} x_1 x_2 + \frac{1}{5} x_2^3 + x_1^4 \\ x_2 + \frac{1}{2} x_1^3 \end{bmatrix} \begin{cases} f_1(x_1, x_2) = x_1 x_2 + \frac{1}{5} x_2^3 + x_1^4 \\ f_2(x_1, x_2) = x_2 + \frac{1}{2} x_1^3 \end{cases}$$

Linear approx system near the equilibrium(0, 0): $\begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

► Eigenvalues & eigenvectors:

$$\begin{aligned} \lambda_1 &= 0, & \vec{\mathbf{u}}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \\ \lambda_2 &= 1 > 0, & \vec{\mathbf{u}}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{aligned}$$

- Thus, the linear approximate dynamics has a repulsive line of equilibria.
- Since there is a neutral eigenvalue λ₁ = 0, it is possible that the nonlinear dynamics is non-equivalent to the linear dynamics near (0,0).

SQ Q

Example 7. (b)(c) Local nonlinear dynamics near (0,0)

Linear approx system for
$$(x_1, x_2) \approx (0, 0)$$
:
 $\vec{\mathbf{x}}' = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \vec{\mathbf{x}}$
Eigenvalues $\begin{cases} \lambda_1 = 0 & \text{(neutral)} \\ \lambda_2 = 1 > 0 & \text{(instability)} \end{cases}$

Linear approx system for
$$(x_1, x_2) \approx (0, 0)$$
:
 $\vec{\mathbf{x}}' = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \vec{\mathbf{x}}$
Eigenvalues $\begin{cases} \lambda_1 = 0 & \text{(neutral)} \\ \lambda_2 = 1 > 0 & \text{(instability)} \end{cases}$
An *incomplete* list of possible nonlinear dynam

11

◆□▶ ◆圖▶ ★ 필▶ ★ 필▶ - [] []

5900

• Linear analysis alone cannot determine the correct picture.

- Linear analysis alone cannot determine the correct picture.
- But we do know (0,0) is unstable in the nonlinear system.

- Linear analysis alone cannot determine the correct picture.
- But we do know (0,0) is unstable in the nonlinear system.
- **Reason:** since $\lambda_2 = 1 > 0$, solutions along this eigenspace will grow, with the growth rate ≈ 1 , even in the nonlinear system.

Linear approx system for $(x_1, x_2) \approx (0, 0)$: $\vec{\mathbf{x}}' = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \vec{\mathbf{x}}$ Eigenvalues $\begin{cases} \lambda_1 = 0 & \text{(neutral)} \\ \lambda_2 = 1 > 0 & \text{(instability)} \end{cases}$

▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필

 \mathcal{A}

Linear approx system for $(x_1, x_2) \approx (0, 0)$: $\vec{\mathbf{x}}' = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \vec{\mathbf{x}}$ Eigenvalues $\begin{cases} \lambda_1 = 0 & (\text{neutral}) \\ \lambda_2 = 1 > 0 & (\text{instability}) \end{cases}$

 Since one of the eigenvalues is > 0, the linear approximation ⇒ the nonlinear instability of (0,0).

Linear approx system for $(x_1, x_2) \approx (0, 0)$: $\vec{\mathbf{x}}' = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \vec{\mathbf{x}}$ Eigenvalues $\begin{cases} \lambda_1 = 0 & \text{(neutral)} \\ \lambda_2 = 1 > 0 & \text{(instability)} \end{cases}$

- Since one of the eigenvalues is > 0, the linear approximation ⇒ the nonlinear instability of (0,0).
- Since one of the eigenvalues is = 0 (neutral), the linear approximation \neq the nonlinear local phase portrait.

Linear approx system for $(x_1, x_2) \approx (0, 0)$: $\vec{\mathbf{x}}' = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \vec{\mathbf{x}}$ Eigenvalues $\begin{cases} \lambda_1 = 0 & \text{(neutral)} \\ \lambda_2 = 1 > 0 & \text{(instability)} \end{cases}$

- Since one of the eigenvalues is > 0, the linear approximation ⇒ the nonlinear instability of (0,0).
- Since one of the eigenvalues is = 0 (neutral), the linear approximation \neq the nonlinear local phase portrait.
- Advanced *nonlinear* tools (center manifolds, ...) can give the local phase portrait of the nonlinear system near (0, 0):

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} x_1 x_2 + \frac{1}{5} x_2^3 + x_1^4 \\ x_2 + \frac{1}{2} x_1^3 \end{bmatrix}$$

