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Recall basics of ~x′ = A~x

Eigenvalues & (generalized) eigenvectors of A

⇒ solution formulas, dynamics, stability/instability,....

Negative eigenvalues λ < 0
Complex eigenvalues λ with Reλ < 0

}

help stabilization.

Zero eigenvalues λ = 0
Complex eigenvalues λ with Reλ = 0

}

are “neutral”.

Positive eigenvalues λ > 0
Complex eigenvalues λ with Reλ > 0

}

imply instability.



Questions Concerning “Structural Stability”:
Suppose we have solved ~x ′ = A(~x − ~a) & have found the
stability/instability of the equilibrium ~x = ~a.

Linear perturbations: Change matrix A a little bit & consider
~x ′ = B(~x − ~a) where B ≈ A.

Nonlinear perturbations: Consider
~x ′ = ~f (~x), where ~f (~x) ≈ A(~x − ~a).
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Questions Concerning “Structural Stability”:
Suppose we have solved ~x ′ = A(~x − ~a) & have found the
stability/instability of the equilibrium ~x = ~a.

Linear perturbations: Change matrix A a little bit & consider
~x ′ = B(~x − ~a) where B ≈ A.

◮ What can we tell about the perturbed system ~x ′ = B(~x − ~a),
by using only the info about ~x ′ = A(~x − ~a)?

◮ Are the dynamics of ~x ′ = A(~x − ~a) & that of ~x ′ = B(~x − ~a)
essentially the same, when B is almost equal to A?

◮ Or, will the slightly perturbed system ~x ′ = B(~x − ~a) behave in
ways completely different from ~x ′ = A(~x − ~a)?

Nonlinear perturbations: Consider
~x ′ = ~f (~x), where ~f (~x) ≈ A(~x − ~a).

◮ What can we tell about the perturbed system ~x ′ = ~f (~x),
by using only the info about ~x ′ = A(~x − ~a)?

◮ Are the dynamics of ~x ′ = A(~x − ~a) & that of ~x ′ = ~f(~x)
essentially the same? Or, will they be markedly different?



Example 1.

~x′ = A~x, A =

»

−3 2
1 −4

–

Eigenvalues & eigenvectors:

λ1 = −2, ~u1 =
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2
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~x′ = A~x, A =

»

−3 2
1 −4

–

Eigenvalues & eigenvectors:

λ1 = −2, ~u1 =

»

2
1

–

λ2 = −5, ~u2 =

»

−1
1

–

General solutions:

~x(t) = C1e−2t

»

2
1

–

+ C2e−5t

»

−1
1

–

~x′ = B~x, B =

»

−2.98 1.98
0.97 −4.01

–

Eigenvalues & eigenvectors:

λ1 ≈ −2.017, ~u1 ≈

»

2.055
1

–

λ2 ≈ −4.973, ~u2 ≈

»

−0.993
1

–

General solutions:

~x(t) = C1e−2.017t

»

2.055
1

–

+ C2e−5.973t

»

−0.993
1

–
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Example 2 (a).

~x′ = A~x, A =

»

−3 −6
−1 −2

–

Eigenvalues & eigenvectors:

λ1 = 0, ~u1 =

»

−2
1

–

λ2 = −5, ~u2 =

»

3
1

–

General solutions:

~x(t) = C1

»

−2
1

–

+ C2e−5t

»

3
1

–

~x′ = B~x, B =

»

−3.09 −5.83
−0.98 −2.01

–

Eigenvalues & eigenvectors:

λ1 ≈ −0.1, ~u1 ≈

»

−1.95
1

–

λ2 ≈ −5.0, ~u2 ≈

»

3.05
1

–

General solutions:

~x(t) = C1e−0.1t

»

−1.95
1

–

+ C2e−5.0t

»

3.05
1

–
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Example 2 (b).

~x′ = A~x, A =

»

−3 −6
−1 −2

–

Eigenvalues & eigenvectors:

λ1 = 0, ~u1 =

»

−2
1

–

λ2 = −5, ~u2 =

»

3
1

–

General solutions:

~x(t) = C1

»

−2
1

–

+ C2e−5t

»

3
1

–

~x′ = B~x, B =

»

−3.09 −6.21
−0.96 −1.76

–

Eigenvalues & eigenvectors:

λ1 ≈ 0.1, ~u1 ≈

»

−1.95
1

–

λ2 ≈ −4.95, ~u2 ≈

»

3.33
1

–

General solutions:

~x(t) = C1e0.1t

»

−1.95
1

–

+ C2e−4.950t

»

3.22
1

–
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~x′ = A~x, A =

»

1 5/2
−2 −1
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Eigenvalues:
λ1,2 = ±2i
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Example 3 (a).

~x′ = A~x, A =

»

1 5/2
−2 −1

–

Eigenvalues:
λ1,2 = ±2i

~x′ = B~x, B =

»

1.04 2.51
−2.01 −0.95

–

Eigenvalues:
λ1,2 ≈ 0.045 ± 2.014 i



Example 3 (b).
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Example 3 (b).

~x′ = A~x, A =

»

1 5/2
−2 −1

–

Eigenvalues:
λ1,2 = ±2i

~x′ = B~x, B =

»
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–



Example 3 (b).

~x′ = A~x, A =

»

1 5/2
−2 −1

–

Eigenvalues:
λ1,2 = ±2i

~x′ = B~x, B =

»

0.97 2.51
−1.99 −1.02

–

Eigenvalues:
λ1,2 ≈ −0.025 ± 2.001 i



The Morals of the Story:

“Neutral” eigenvalues (λ = 0 or Re λ = 0)
are the sources of structural instability.

If the system has neutral eigenvalues, a tiny change in the diff

eqs may alter the phase portrait completely.

Other “non-neutral” eigenvalues
give structural stable dynamics.

If the system has no neutral eigenvalues, small changes in diff

eqs will not change the dynamics radically & will only give an

equivalent phase portrait.



Linear Perturbation Theorems:

Theorem 1. If A has a neutral eigenvalue (λ = 0 or Re λ = 0),
then the dynamics are sensitive to the coeff. perturbations.

In this case, for some matrices B ≈ A,

the dynamics of

~x′ = A~x

may be radically
different from

the dynamics of

~x′ = B~x
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Linear Perturbation Theorems:

Theorem 1. If A has a neutral eigenvalue (λ = 0 or Re λ = 0),
then the dynamics are sensitive to the coeff. perturbations.

In this case, for some matrices B ≈ A,

the dynamics of

~x′ = A~x

may be radically
different from

the dynamics of

~x′ = B~x

Theorem 2. If all eigenvalues of A have nonzero real parts,
then the dynamics are robust to the coefficient
perturbations.

In this case, for any matrix B ≈ A,

the dynamics of

~x′ = A~x

are essentially
equivalent to

the dynamics of

~x′ = B~x

Theorem 3. If all eigenvalues of A have real parts < 0,
then the equilibrium is asymp. stable not only for ~x′ = A~x,

but is also asymp. stable for ~x′ = B~x for all B ≈ A.

Theorem 4. If at least one eigenvalue of A has real part > 0,
then the equilibrium is unstable not only for ~x′ = A~x,

but is also unstable for ~x′ = B~x for all B ≈ A.
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then the local dynamics are robust to nonlinear
perturbations.
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In this case, for ~f(~x) ≈ A(~x − ~a) for ~x ≈ ~a,

the local dynamics of

~x′ = A(~x − ~a) near ~x ≈ ~a

are essentially
equivalent to

the local dynamics of

~x′ = ~f(~x) near ~x ≈ ~a

If A has a neutral eigenvalue,
then the local dynamics are sensitive to nonlin.
perturbations.

In this case, for ~f(~x) ≈ A(~x − ~a) for ~x ≈ ~a,

the local dynamics of

~x′ = A(~x − ~a) near ~x ≈ ~a

may be radically
different from

the local dynamics of

~x′ = ~f(~x) near ~x ≈ ~a



Nonlinear Perturbation Theorems:

If all eigenvalues of A have nonzero real parts,
then the local dynamics are robust to nonlinear
perturbations.

In this case, for ~f(~x) ≈ A(~x − ~a) for ~x ≈ ~a,

the local dynamics of

~x′ = A(~x − ~a) near ~x ≈ ~a

are essentially
equivalent to

the local dynamics of

~x′ = ~f(~x) near ~x ≈ ~a

If A has a neutral eigenvalue,
then the local dynamics are sensitive to nonlin.
perturbations.

In this case, for ~f(~x) ≈ A(~x − ~a) for ~x ≈ ~a,
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Nonlinear Perturbation Theorems:

If all eigenvalues of A have nonzero real parts,
then the local dynamics are robust to nonlinear
perturbations.

In this case, for ~f(~x) ≈ A(~x − ~a) for ~x ≈ ~a,

the local dynamics of

~x′ = A(~x − ~a) near ~x ≈ ~a

are essentially
equivalent to

the local dynamics of

~x′ = ~f(~x) near ~x ≈ ~a

If A has a neutral eigenvalue,
then the local dynamics are sensitive to nonlin.
perturbations.

In this case, for ~f(~x) ≈ A(~x − ~a) for ~x ≈ ~a,

the local dynamics of

~x′ = A(~x − ~a) near ~x ≈ ~a

may be radically
different from

the local dynamics of

~x′ = ~f(~x) near ~x ≈ ~a

If all eigenvalues of A have real parts < 0,
then ~x = ~a is asymp. stable for ~x′ = ~f(~x) as long as
~f(~x) ≈ A(~x − ~a) near ~x ≈ ~a.

If at least one eigenvalue of A has real part > 0,
then ~x = ~a is unstable for ~x′ = ~f(~x) as long as ~f(~x) ≈ A(~x − ~a)
near ~x ≈ ~a.



Example 4. (Nonlinear perturbation)
"

x′
1

x′
2

#

=

"

5x1 + 5x2

3x1 − 9x2

#

Eigenvalues: λ1 = 6, λ2 = −10
The equilibrium (0, 0) is a saddle.
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The red terms ≪ the linear terms,
near (x1, x2) ≈ (0, 0).
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The red terms ≪ the linear terms,
near (x1, x2) ≈ (0, 0).

Near the equilibrium (0, 0): The perturbation terms are almost negligible & the
two phase portraits are locally equivalent.



Example 4. (Nonlinear perturbation)
"

x′
1

x′
2

#

=

"

5x1 + 5x2

3x1 − 9x2

#

Eigenvalues: λ1 = 6, λ2 = −10
The equilibrium (0, 0) is a saddle.

"

x′
1

x′
2

#

=

"

5x1 + 5x2 −5x1x2

3x1 − 9x2 +9x2
2 − 3x3

2

#

The red terms ≪ the linear terms,
near (x1, x2) ≈ (0, 0).

Near the equilibrium (0, 0): The perturbation terms are almost negligible & the
two phase portraits are locally equivalent.

Far from (0, 0): The red terms are no longer small. The two phase portraits are

globally non-equivalent.



The Linear Approximating System near an equilibrium

~x ′ = ~f (~x)

[

x′

1

x′

2

]

=

[

f1(x1, x2)
f2(x1, x2)

]

.
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f2(x1, x2) = 0
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The Linear Approximating System near an equilibrium

~x ′ = ~f (~x)

[

x′

1

x′

2

]

=

[

f1(x1, x2)
f2(x1, x2)

]

.

◮ Find equilibria, by solving ~f(~x) = 0, that is,

{
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The Linear Approximating System near an equilibrium

~x ′ = ~f (~x)

[

x′
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x′

2

]

=

[

f1(x1, x2)
f2(x1, x2)

]

.

◮ Find equilibria, by solving ~f(~x) = 0, that is,

{

f1(x1, x2) = 0
f2(x1, x2) = 0

◮ Near an equilibria ~a = (a1, a2), take a linear approximation:

◮ f1(x1, x2) ≈
∂f1

∂x1

(a1, a2)(x1 − a1) + ∂f1
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◮ f2(x1, x2) ≈
∂f2
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◮ Or, equivalently, the linear approx system is:
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where J =





∂f1

∂x1

(a1, a2)
∂f1

∂x2

(a1, a2)

∂f2

∂x1

(a1, a2)
∂f2

∂x2

(a1, a2)



 is the Jacobian matrix.



Example 5.

[

x′
1

x′
2

]

=
[

−x1 − x2

x1 − 7x2 + x2
2 − 3x1x2

] {

f1(x1, x2) = −x1 − x2

f2(x1, x2) = x1 − 7x2 + x2
2 − 3x1x2

◮ Find all equilibria.

◮ For each equilibrium, give the linear approximating system near
it.

◮ Sketch the phase portrait of the linear approximating system.

◮ Determine whether each equilibrium is stable or unstable with
respect to the nonlinear system.
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(1) − x1 − x2 = 0
(2) x1 − 7x2 + x2

2
− 3x1x2 = 0



Example 5. Find equilibria.

[
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x′
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]

=
[

−x1 − x2

x1 − 7x2 + x2
2 − 3x1x2

] {

f1(x1, x2) = −x1 − x2

f2(x1, x2) = x1 − 7x2 + x2
2 − 3x1x2

• Find equilibria, by solving ~f (~x) = 0, that is,

{

f1(x1, x2) = 0
f2(x1, x2) = 0

{

(1) − x1 − x2 = 0
(2) x1 − 7x2 + x2

2
− 3x1x2 = 0

From (1), x2 = −x1.
Substitute this in (2): 8x1 + 4x2

1
= 0 ⇒ x1 = 0, or x1 = −2.



Example 5. Find equilibria.
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x′
1

x′
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x1 − 7x2 + x2
2 − 3x1x2
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f1(x1, x2) = −x1 − x2

f2(x1, x2) = x1 − 7x2 + x2
2 − 3x1x2

• Find equilibria, by solving ~f (~x) = 0, that is,

{

f1(x1, x2) = 0
f2(x1, x2) = 0

{

(1) − x1 − x2 = 0
(2) x1 − 7x2 + x2

2
− 3x1x2 = 0

From (1), x2 = −x1.
Substitute this in (2): 8x1 + 4x2

1
= 0 ⇒ x1 = 0, or x1 = −2.

Combined with x2 = −x1:

⇒ Two equilibria: (x1, x2) = (0, 0), (x1, x2) = (−2, 2).



Example 5. Linear approximating system near the

equilibrium (0, 0).
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x′
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x′
2

]
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x1 − 7x2 + x2
2 − 3x1x2
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2 − 3x1x2

• Two equilibria: (x1, x2) = (0, 0), (x1, x2) = (−2, 2).
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• Calculate the Jacobian matrix

J =
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

∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2


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[

−1 −1

1 − 3x2 −7 − 3x1 + 2x2

]
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
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∂f1

∂x2

∂f2

∂x1

∂f2

∂x2


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[
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• Near the equilibrium (0, 0), construct a linear approx. system:
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∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2



 =

[

−1 −1

1 − 3x2 −7 − 3x1 + 2x2
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• Near the equilibrium (0, 0), construct a linear approx. system:

◮ Evaluate J at equilibrium (x1, x2) = (0, 0): J =

[

−1 −1
1 −7

]



Example 5. Linear approximating system near the

equilibrium (0, 0).
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∂f1
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∂f1

∂x2

∂f2

∂x1

∂f2

∂x2



 =

[

−1 −1

1 − 3x2 −7 − 3x1 + 2x2

]

• Near the equilibrium (0, 0), construct a linear approx. system:

◮ Evaluate J at equilibrium (x1, x2) = (0, 0): J =

[

−1 −1
1 −7

]

◮ The linear approximating system near (0, 0) is:

[

x′

1

x′

2

]

=

[

−1 −1
1 −7

] [

x1

x2

]



Example 5. Dynamics near (0, 0).

»

x′
1

x′
2

–

=

»

−x1 − x2

x1 − 7x2 + x2
2 − 3x1x2

– 

f1(x1, x2) = −x1 − x2

f2(x1, x2) = x1 − 7x2 + x2
2 − 3x1x2

• Two equilibria: (x1, x2) = (0, 0), (x1, x2) = (−2, 2).

• Linear approx system near (0, 0): ~x ′ =

»

−1 −1
1 −7

–

~x



Example 5. Dynamics near (0, 0).

»

x′
1

x′
2

–

=

»

−x1 − x2

x1 − 7x2 + x2
2 − 3x1x2

– 

f1(x1, x2) = −x1 − x2

f2(x1, x2) = x1 − 7x2 + x2
2 − 3x1x2

• Two equilibria: (x1, x2) = (0, 0), (x1, x2) = (−2, 2).
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–
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• Eigenvalues & eigenvectors:
λ1 = −4 + 2

√
2 < 0, ~u1 =

»

3 + 2
√

2
1

–

,

λ2 = −4 − 2
√

2 < 0, ~u2 =

»

3 − 2
√

2
1

–



Example 5. Dynamics near (0, 0).
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–
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• Eigenvalues & eigenvectors:
λ1 = −4 + 2

√
2 < 0, ~u1 =

»

3 + 2
√

2
1

–

,

λ2 = −4 − 2
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2
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• Thus, (0, 0) is an attractive node & is asymptotically stable in the linear
dynamics.
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√
2 < 0, ~u1 =

»

3 + 2
√

2
1

–

,

λ2 = −4 − 2
√
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2
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• Thus, (0, 0) is an attractive node & is asymptotically stable in the linear
dynamics.

• Since the eigenvalues are not neutral,
the nonlinear dynamics are equivalent to the linear dynamics near (0, 0).



Example 5. Dynamics near (0, 0).

»

x′
1

x′
2

–

=

»
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2 − 3x1x2

• Two equilibria: (x1, x2) = (0, 0), (x1, x2) = (−2, 2).

• Linear approx system near (0, 0): ~x ′ =

»

−1 −1
1 −7

–

~x

• Eigenvalues & eigenvectors:
λ1 = −4 + 2

√
2 < 0, ~u1 =

»

3 + 2
√

2
1

–

,

λ2 = −4 − 2
√

2 < 0, ~u2 =

»

3 − 2
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• Thus, (0, 0) is an attractive node & is asymptotically stable in the linear
dynamics.

• Since the eigenvalues are not neutral,
the nonlinear dynamics are equivalent to the linear dynamics near (0, 0).

• Equilibrium (0, 0) is asymptotically stable with respect to the original

nonlinear system.
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–
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»

x′
1

x′
2

–

=

»

−x1 − x2

x1 − 7x2 + x2
2 − 3x1x2

– 
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–
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»
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1
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2

–
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»
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−5 3

– »
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x2 − 2

–

• Eigenvalues & eigenvectors:
λ1 = 4, ~u1 =

»

−1/5
1

–

,

λ2 = −2, ~u2 =

»

1
1

–

• Thus, (−2, 2) is a saddle & is unstable in the linear dynamics.
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x′
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–
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1
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λ2 = −2, ~u2 =

»

1
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• Thus, (−2, 2) is a saddle & is unstable in the linear dynamics.

• Since the eigenvalues are not neutral,
the nonlinear dynamics are equivalent to the linear dynamics near (−2, 2).



Example 5. Dynamics near (−2, 2).

»

x′
1

x′
2

–

=

»

−x1 − x2

x1 − 7x2 + x2
2 − 3x1x2

– 

f1(x1, x2) = −x1 − x2

f2(x1, x2) = x1 − 7x2 + x2
2 − 3x1x2

• Two equilibria: (x1, x2) = (0, 0), (x1, x2) = (−2, 2).

• Evaluate J at (x1, x2) = (−2, 2): J =

»

−1 −1
−5 3

–

• Linear approx system near (−2, 2):

»

x′
1

x′
2

–

=

»

−1 −1
−5 3

– »

x1 + 2
x2 − 2

–

• Eigenvalues & eigenvectors:
λ1 = 4, ~u1 =

»

−1/5
1

–

,

λ2 = −2, ~u2 =

»

1
1

–

• Thus, (−2, 2) is a saddle & is unstable in the linear dynamics.

• Since the eigenvalues are not neutral,
the nonlinear dynamics are equivalent to the linear dynamics near (−2, 2).

• Equilibrium (−2, 2) is also a saddle with respect to the original nonlinear

system & it is unstable.



Example 5. Since all the eigenvalues are non-neutral,

Linear approx dynamics ⇒ Nonlinear local dynamics near equilibria



Example 5. Since all the eigenvalues are non-neutral,

Linear approx dynamics ⇒ Nonlinear local dynamics near equilibria



Example 5. Global phase portrait of the nonlinear system



Example 5. Global phase portrait of the nonlinear system



Example 6 (Neutral Eigenvalue)

{

x′

1 = 2x1x2 + x2
2 − x3

1 + x5
1

x′

2
= −x2 + x2

1

◮ Find all equilibria.

◮ For each equilibrium, give the linear approximating system near
it.

◮ Sketch the phase portrait of the linear approximating system.

◮ Determine whether each equilibrium is stable or unstable with
respect to the nonlinear system.



Example 6 (continued). Find equilibria.

{

x′

1 = 2x1x2 + x2
2 − x3

1 + x5
1

x′

2
= −x2 + x2

1



Example 6 (continued). Find equilibria.

{

x′

1 = 2x1x2 + x2
2 − x3

1 + x5
1

x′

2
= −x2 + x2

1

• Find equilibria, by solving ~f (~x) = 0, that is,

{

f1(x1, x2) = 0
f2(x1, x2) = 0



Example 6 (continued). Find equilibria.

{

x′

1 = 2x1x2 + x2
2 − x3

1 + x5
1

x′

2
= −x2 + x2

1

• Find equilibria, by solving ~f (~x) = 0, that is,

{

f1(x1, x2) = 0
f2(x1, x2) = 0

{

(1) 2x1x2 + x2

2 − x3

1 + x5

1 = 0
(2) − x2 + x2

1
= 0



Example 6 (continued). Find equilibria.

{

x′

1 = 2x1x2 + x2
2 − x3

1 + x5
1

x′

2
= −x2 + x2

1

• Find equilibria, by solving ~f (~x) = 0, that is,

{

f1(x1, x2) = 0
f2(x1, x2) = 0

{

(1) 2x1x2 + x2

2 − x3

1 + x5

1 = 0
(2) − x2 + x2

1
= 0

From (2), x2 = x2
1.

Substitute this in (1):
x3

1 + x4
1 + x5

1 = 0 ⇒ x3
1(1 + x1 + x2

1) = 0 ⇒ x1 = 0



Example 6 (continued). Find equilibria.

{

x′

1 = 2x1x2 + x2
2 − x3

1 + x5
1

x′

2
= −x2 + x2

1

• Find equilibria, by solving ~f (~x) = 0, that is,

{

f1(x1, x2) = 0
f2(x1, x2) = 0

{

(1) 2x1x2 + x2

2 − x3

1 + x5

1 = 0
(2) − x2 + x2

1
= 0

From (2), x2 = x2
1.

Substitute this in (1):
x3

1 + x4
1 + x5

1 = 0 ⇒ x3
1(1 + x1 + x2

1) = 0 ⇒ x1 = 0

From x2 = x2

1
it follows x2 = 0.

⇒ Only one equilibrium: (x1, x2) = (0, 0).



Example 6 (continued).

Linear approx sys near the equilibrium (0, 0).

[

x′
1

x′
2

]

=
[

2x1x2 + x2
2 − x3

1 + x5
1

−x2 + x2
1

] {

f1(x1, x2) = 2x1x2 + x2
2 − x3

1 + x5
1

f2(x1, x2) = −x2 + x2
1



Example 6 (continued).

Linear approx sys near the equilibrium (0, 0).

[

x′
1

x′
2

]

=
[

2x1x2 + x2
2 − x3

1 + x5
1

−x2 + x2
1

] {

f1(x1, x2) = 2x1x2 + x2
2 − x3

1 + x5
1

f2(x1, x2) = −x2 + x2
1

◮ Calculate the Jacobian matrix

J =





∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2



 =

[

2x2 − 3x2

1
+ 5x4

1
2x1 + 2x2

2x1 −1

]



Example 6 (continued).

Linear approx sys near the equilibrium (0, 0).

[

x′
1

x′
2

]

=
[

2x1x2 + x2
2 − x3

1 + x5
1

−x2 + x2
1

] {

f1(x1, x2) = 2x1x2 + x2
2 − x3

1 + x5
1

f2(x1, x2) = −x2 + x2
1

◮ Calculate the Jacobian matrix

J =





∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2



 =

[

2x2 − 3x2

1
+ 5x4

1
2x1 + 2x2

2x1 −1

]

◮ Evaluate J at equilibrium (x1, x2) = (0, 0): J =

[

0 0
0 −1

]



Example 6 (continued).

Linear approx sys near the equilibrium (0, 0).

[

x′
1

x′
2

]

=
[

2x1x2 + x2
2 − x3

1 + x5
1

−x2 + x2
1

] {

f1(x1, x2) = 2x1x2 + x2
2 − x3

1 + x5
1

f2(x1, x2) = −x2 + x2
1

◮ Calculate the Jacobian matrix

J =





∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2



 =

[

2x2 − 3x2

1
+ 5x4

1
2x1 + 2x2

2x1 −1

]

◮ Evaluate J at equilibrium (x1, x2) = (0, 0): J =

[

0 0
0 −1

]

◮ The linear approximating system near (0, 0) is:

[

x′

1

x′

2

]

=

[

0 0
0 −1

] [

x1

x2

]



Example 6. (continued)

Linear Approximate Dynamics near (0, 0).
»

x′
1

x′
2

–

=

»

2x1x2 + x2
2 − x3

1 + x5
1

−x2 + x2
1

– 

f1(x1, x2) = 2x1x2 + x2
2 − x3

1 + x5
1

f2(x1, x2) = −x2 + x2
1

◮ Linear approx system near the equilibrium(0, 0): ~x ′ =

»

0 0
0 −1

–

~x



Example 6. (continued)

Linear Approximate Dynamics near (0, 0).
»

x′
1

x′
2

–

=

»

2x1x2 + x2
2 − x3

1 + x5
1

−x2 + x2
1

– 

f1(x1, x2) = 2x1x2 + x2
2 − x3

1 + x5
1

f2(x1, x2) = −x2 + x2
1

◮ Linear approx system near the equilibrium(0, 0): ~x ′ =

»

0 0
0 −1

–

~x

◮ Eigenvalues & eigenvectors:
8

>

>

<

>

>

:

λ1 = 0, ~u1 =

»

1
0

–

,

λ2 = −1 < 0, ~u2 =

»

0
1

–



Example 6. (continued)

Linear Approximate Dynamics near (0, 0).
»

x′
1

x′
2

–

=

»

2x1x2 + x2
2 − x3

1 + x5
1

−x2 + x2
1

– 

f1(x1, x2) = 2x1x2 + x2
2 − x3

1 + x5
1

f2(x1, x2) = −x2 + x2
1

◮ Linear approx system near the equilibrium(0, 0): ~x ′ =

»

0 0
0 −1

–

~x

◮ Eigenvalues & eigenvectors:
8

>

>

<

>

>

:

λ1 = 0, ~u1 =

»

1
0

–

,

λ2 = −1 < 0, ~u2 =

»

0
1

–

◮ Thus, the linear approximate dynamics
has an attractive line of equilibria.



Example 6. (continued)

Linear Approximate Dynamics near (0, 0).
»

x′
1

x′
2

–

=

»

2x1x2 + x2
2 − x3

1 + x5
1

−x2 + x2
1

– 

f1(x1, x2) = 2x1x2 + x2
2 − x3

1 + x5
1

f2(x1, x2) = −x2 + x2
1

◮ Linear approx system near the equilibrium(0, 0): ~x ′ =

»

0 0
0 −1

–

~x

◮ Eigenvalues & eigenvectors:
8

>

>

<

>

>

:

λ1 = 0, ~u1 =

»

1
0

–

,

λ2 = −1 < 0, ~u2 =

»

0
1

–

◮ Thus, the linear approximate dynamics
has an attractive line of equilibria.

◮ Since there is a neutral eigenvalue λ1 = 0,
it is possible that the nonlinear dynamics
is non-equivalent to the linear dynamics
near (0, 0).



Example 6. (continued)

Linear Approximate Dynamics near (0, 0).
»

x′
1

x′
2

–

=

»

2x1x2 + x2
2 − x3

1 + x5
1

−x2 + x2
1

– 

f1(x1, x2) = 2x1x2 + x2
2 − x3

1 + x5
1

f2(x1, x2) = −x2 + x2
1

◮ Linear approx system near the equilibrium(0, 0): ~x ′ =

»

0 0
0 −1

–

~x

◮ Eigenvalues & eigenvectors:
8

>

>

<

>

>

:

λ1 = 0, ~u1 =

»

1
0

–

,

λ2 = −1 < 0, ~u2 =

»

0
1

–

◮ Thus, the linear approximate dynamics
has an attractive line of equilibria.

◮ Since there is a neutral eigenvalue λ1 = 0,
it is possible that the nonlinear dynamics
is non-equivalent to the linear dynamics
near (0, 0).

◮ In other words, the linear analysis fails to determine the local
nonlinear dynamics near (0, 0).



Example 6. (continued)

Linear approx system for (x1, x2) ≈ (0, 0):

~x ′ =

[

0 0
0 −1

]

~x

Eigenvalues

{

λ1 = 0
λ2 = −1 < 0



Example 6. (continued)

Linear approx system for (x1, x2) ≈ (0, 0):

~x ′ =

[

0 0
0 −1

]

~x

Eigenvalues

{

λ1 = 0
λ2 = −1 < 0

The following is an incomplete list of the
possible local phase portraits of the nonlinear system near (0, 0):

et cetera



Example 6. (continued)

Linear approx system for (x1, x2) ≈ (0, 0):

~x ′ =

[

0 0
0 −1

]

~x

Eigenvalues

{

λ1 = 0
λ2 = −1 < 0

The following is an incomplete list of the
possible local phase portraits of the nonlinear system near (0, 0):

et cetera

To determine the correct picture, need advanced nonlinear theories:
normal forms, center manifolds, · · · .



Example 6. (continued)
Linear approx system for (x1, x2) ≈ (0, 0):

~x ′ =

[

0 0
0 −1

]

~x

Eigenvalues

{

λ1 = 0
λ2 = −1 < 0



Example 6. (continued)
Linear approx system for (x1, x2) ≈ (0, 0):

~x ′ =

[

0 0
0 −1

]

~x

Eigenvalues

{

λ1 = 0
λ2 = −1 < 0

The actual local phase portrait of
the nonlinear system near (0, 0):

[

x′

1

x′

2

]

=

[

2x1x2 + x2

2
− x3

1
+ x5

1

−x2 + x2

1

]



Example 6. (continued)
Linear approx system for (x1, x2) ≈ (0, 0):

~x ′ =

[

0 0
0 −1

]

~x

Eigenvalues

{

λ1 = 0
λ2 = −1 < 0

The actual local phase portrait of
the nonlinear system near (0, 0):

[

x′

1

x′

2

]

=

[

2x1x2 + x2

2
− x3

1
+ x5

1

−x2 + x2

1

]

• Impossible to get this by the linear approximation alone.
• Advanced nonlinear tools (center manifolds, ...) can get us this
picture.



Example 7 (Neutral Eigenvalue)

{

x′

1 = x1x2 + 1

5
x3

2 + x4
1

x′

2 = x2 + 1

2
x3

1

◮ Give the linear approximating system near the equilibrium (0, 0).
Sketch the phase portrait of the linear approx system.

◮ Determine whether (0, 0) is stable or unstable with respect to the
nonlinear system.

◮ Sketch the local phase portrait of the nonlinear system near (0, 0)



Example 7 (a) Linear approx system near (0, 0).

[

x′
1

x′
2

]

=

[

x1x2 + 1
5
x3
2 + x4

1

x2 + 1
2
x3
1

] {

f1(x1, x2) = x1x2 + 1
5
x3
2 + x4

1

f2(x1, x2) = x2 + 1
2
x3
1



Example 7 (a) Linear approx system near (0, 0).

[

x′
1

x′
2

]

=

[

x1x2 + 1
5
x3
2 + x4

1

x2 + 1
2
x3
1

] {

f1(x1, x2) = x1x2 + 1
5
x3
2 + x4

1

f2(x1, x2) = x2 + 1
2
x3
1

◮ Calculate the Jacobian matrix

J =





∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2



 =

[

x2 + 4x3

1
x1 + 3

5
x2

2

3

2
x2

1
1

]



Example 7 (a) Linear approx system near (0, 0).

[

x′
1

x′
2

]

=

[

x1x2 + 1
5
x3
2 + x4

1

x2 + 1
2
x3
1

] {

f1(x1, x2) = x1x2 + 1
5
x3
2 + x4

1

f2(x1, x2) = x2 + 1
2
x3
1

◮ Calculate the Jacobian matrix

J =





∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2



 =

[

x2 + 4x3

1
x1 + 3

5
x2

2

3

2
x2

1
1

]

◮ Evaluate J at equilibrium (x1, x2) = (0, 0): J =

[

0 0
0 1

]



Example 7 (a) Linear approx system near (0, 0).

[

x′
1

x′
2

]

=

[

x1x2 + 1
5
x3
2 + x4

1

x2 + 1
2
x3
1

] {

f1(x1, x2) = x1x2 + 1
5
x3
2 + x4

1

f2(x1, x2) = x2 + 1
2
x3
1

◮ Calculate the Jacobian matrix

J =





∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2



 =

[

x2 + 4x3

1
x1 + 3

5
x2

2

3

2
x2

1
1

]

◮ Evaluate J at equilibrium (x1, x2) = (0, 0): J =

[

0 0
0 1

]

◮ The linear approximating system near (0, 0) is:

[

x′

1

x′

2

]

=

[

0 0
0 1

] [

x1

x2

]



Example 7 (a) Linear Approx Dynamics near

(0, 0).
»

x′
1

x′
2

–

=

»

x1x2 + 1
5
x3
2 + x4

1

x2 + 1
2
x3
1

– 

f1(x1, x2) = x1x2 + 1
5
x3
2 + x4

1

f2(x1, x2) = x2 + 1
2
x3
1

◮ Linear approx system near the equilibrium(0, 0):
»

x′
1

x′
2

–

=

»

0 0
0 1

– »

x1

x2

–



Example 7 (a) Linear Approx Dynamics near

(0, 0).
»

x′
1

x′
2

–

=

»

x1x2 + 1
5
x3
2 + x4

1

x2 + 1
2
x3
1

– 

f1(x1, x2) = x1x2 + 1
5
x3
2 + x4

1

f2(x1, x2) = x2 + 1
2
x3
1

◮ Linear approx system near the equilibrium(0, 0):
»

x′
1

x′
2

–

=

»

0 0
0 1

– »

x1

x2

–

◮ Eigenvalues & eigenvectors:
8

>

>

<

>

>

:

λ1 = 0, ~u1 =

»

1
0

–

,

λ2 = 1 > 0, ~u2 =

»

0
1

–



Example 7 (a) Linear Approx Dynamics near

(0, 0).
»

x′
1

x′
2

–

=

»

x1x2 + 1
5
x3
2 + x4

1

x2 + 1
2
x3
1

– 

f1(x1, x2) = x1x2 + 1
5
x3
2 + x4

1

f2(x1, x2) = x2 + 1
2
x3
1

◮ Linear approx system near the equilibrium(0, 0):
»

x′
1

x′
2

–

=

»

0 0
0 1

– »

x1

x2

–

◮ Eigenvalues & eigenvectors:
8

>

>

<

>

>

:

λ1 = 0, ~u1 =

»

1
0

–

,

λ2 = 1 > 0, ~u2 =

»

0
1

–

◮ Thus, the linear approximate dynamics
has a repulsive line of equilibria.



Example 7 (a) Linear Approx Dynamics near

(0, 0).
»

x′
1

x′
2

–

=

»

x1x2 + 1
5
x3
2 + x4

1

x2 + 1
2
x3
1

– 

f1(x1, x2) = x1x2 + 1
5
x3
2 + x4

1

f2(x1, x2) = x2 + 1
2
x3
1

◮ Linear approx system near the equilibrium(0, 0):
»

x′
1

x′
2

–

=

»

0 0
0 1

– »

x1

x2

–

◮ Eigenvalues & eigenvectors:
8

>

>

<

>

>

:

λ1 = 0, ~u1 =

»

1
0

–

,

λ2 = 1 > 0, ~u2 =

»

0
1

–

◮ Thus, the linear approximate dynamics
has a repulsive line of equilibria.

◮ Since there is a neutral eigenvalue λ1 = 0,
it is possible that the nonlinear dynamics
is non-equivalent to the linear dynamics
near (0, 0).



Example 7. (b)(c) Local nonlinear dynamics

near (0, 0)

Linear approx system for (x1, x2) ≈ (0, 0):

~x ′ =

[

0 0
0 1

]

~x

Eigenvalues

{

λ1 = 0 (neutral)
λ2 = 1 > 0 (instability)



Example 7. (b)(c) Local nonlinear dynamics

near (0, 0)

Linear approx system for (x1, x2) ≈ (0, 0):

~x ′ =

[

0 0
0 1

]

~x

Eigenvalues

{

λ1 = 0 (neutral)
λ2 = 1 > 0 (instability)

An incomplete list of possible nonlinear dynamics near (0, 0):



Example 7. (b)(c) Local nonlinear dynamics

near (0, 0)

Linear approx system for (x1, x2) ≈ (0, 0):

~x ′ =

[

0 0
0 1

]

~x

Eigenvalues

{

λ1 = 0 (neutral)
λ2 = 1 > 0 (instability)

An incomplete list of possible nonlinear dynamics near (0, 0):

• Linear analysis alone cannot determine the correct picture.



Example 7. (b)(c) Local nonlinear dynamics

near (0, 0)

Linear approx system for (x1, x2) ≈ (0, 0):

~x ′ =

[

0 0
0 1

]

~x

Eigenvalues

{

λ1 = 0 (neutral)
λ2 = 1 > 0 (instability)

An incomplete list of possible nonlinear dynamics near (0, 0):

• Linear analysis alone cannot determine the correct picture.

• But we do know (0, 0) is unstable in the nonlinear system.



Example 7. (b)(c) Local nonlinear dynamics

near (0, 0)

Linear approx system for (x1, x2) ≈ (0, 0):

~x ′ =

[

0 0
0 1

]

~x

Eigenvalues

{

λ1 = 0 (neutral)
λ2 = 1 > 0 (instability)

An incomplete list of possible nonlinear dynamics near (0, 0):

• Linear analysis alone cannot determine the correct picture.

• But we do know (0, 0) is unstable in the nonlinear system.

• Reason: since λ2 = 1 > 0, solutions along this eigenspace will grow,
with the growth rate ≈ 1, even in the nonlinear system.



Example 7. Summary.
Linear approx system for (x1, x2) ≈ (0, 0):

~x ′ =

[

0 0
0 1

]

~x

Eigenvalues

{

λ1 = 0 (neutral)
λ2 = 1 > 0 (instability)



Example 7. Summary.
Linear approx system for (x1, x2) ≈ (0, 0):

~x ′ =

[

0 0
0 1

]

~x

Eigenvalues

{

λ1 = 0 (neutral)
λ2 = 1 > 0 (instability)

• Since one of the eigenvalues is > 0,
the linear aprroximation ⇒ the nonlinear instability of (0, 0).



Example 7. Summary.
Linear approx system for (x1, x2) ≈ (0, 0):

~x ′ =

[

0 0
0 1

]

~x

Eigenvalues

{

λ1 = 0 (neutral)
λ2 = 1 > 0 (instability)

• Since one of the eigenvalues is > 0,
the linear aprroximation ⇒ the nonlinear instability of (0, 0).

• Since one of the eigenvalues is = 0 (neutral),
the linear aprroximation 6⇒ the nonlinear local phase portrait.



Example 7. Summary.
Linear approx system for (x1, x2) ≈ (0, 0):

~x ′ =

[

0 0
0 1

]

~x

Eigenvalues

{

λ1 = 0 (neutral)
λ2 = 1 > 0 (instability)

• Since one of the eigenvalues is > 0,
the linear aprroximation ⇒ the nonlinear instability of (0, 0).

• Since one of the eigenvalues is = 0 (neutral),
the linear aprroximation 6⇒ the nonlinear local phase portrait.

• Advanced nonlinear tools (center mani-
folds, ...) can give the local phase portrait
of the nonlinear system near (0, 0):

[

x′

1

x′

2

]

=

[

x1x2 + 1

5
x3

2 + x4

1

x2 + 1

2
x3

1

]


