2D Homogeneous Linear Systems with
Constant Coeflicients
— perturbed systems

Xu-Yan Chen
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Recall basics of X' = AX

Eigenvalues & (generalized) eigenvectors of A
= solution formulas, dynamics, stability /instability.....

Negative eigenvalues A < 0

Complex eigenvalues A\ with Re A < 0 } help stabilization.

Zero eigenvalues A = 0 « 0
are “neutral”.

Complex eigenvalues A with ReA =0

Positive eigenvalues A > 0 } imply instability.

Complex eigenvalues A with Re A > 0



Questions Concerning *“Structural Stability”:

Suppose we have solved X’ = A(X — a) & have found the
stability /instability of the equilibrium X = a.

Linear perturbations: Change matrix A a little bit & consider
X' = B(X —a) where B ~ A.

Nonlinear perturbations: Consider
X' = f(X), where f(X) ~ A(X — a).
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Questions Concerning *“Structural Stability”:

Suppose we have solved X’ = A(X — a) & have found the
stability /instability of the equilibrium X = a.

Linear perturbations: Change matrix A a little bit & consider
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Questions Concerning *“Structural Stability”:

Suppose we have solved X’ = A(X — a) & have found the
stability /instability of the equilibrium X = a.

Linear perturbations: Change matrix A a little bit & consider
X' = B(X —4d) where B ~ A.

» What can we tell about the perturbed system X’ = B(X — a),
by using only the info about X’ = A(X — a)?

» Are the dynamics of X' = A(X — a) & that of X' = B(X — a)
essentially the same, when B is almost equal to A?

» Or, will the slightly perturbed system X’ = B(X — a) behave in
ways completely different from X’ = A(X — a)?

Nonlinear perturbations: Consider
X' = f(X), where f(X) ~ A(X — a).

» What can we tell about the perturbed system X’ = (),
by using only the info about X’ = A(X — a)?

> Are the dynamics of ' = A(X — &) & that of X/ = £(X)
essentially the same? Or, will they be markedly different?



Example 1.

i’:Ai,A:[_S 2]

1 —4
Eigenvalues & eigenvectors:
A1 = —2,u; = [ﬂ

Ag = =5, Uy = [_11]
General solutions:

R(t) = Cie 2t m + Coe™ ot [‘11]

Original Linear Dynamics: Attractive

Improper Node
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Example 1.

o) Ao |3 2 =) e _|—2.98 1.98
X =A%, A= [ 1 —4] x =bx, B= [ 0.97 —4.01]
Eigenvalues & eigenvectors:

~ 2
A1 = —2,u; = [1]

Ag = =5, Uy = [_11]
General solutions:

R(t) = Cie 2t m + Coe™ ot [‘11]

Original Linear Dynamics: Attractive

Improper Node
3_




Example 1.

Y oae . [-3 2 Y o oo [—2.98  1.98
X =A%, A= [ 1 —4] x =bx, B= [ 0.97 —4.01]
Eigenvalues & eigenvectors: Eigenvalues & eigenvectors:
Al = —2,U41 = [?] A R —2.017,41 &~ |:2°(i55:|
Ay = —5, dy = [_11] Ao A —4.973, dy A [_0'1993}
General solutions: General solutions:
2(t) = Cpe2t [ﬂ 4 Coe bt [—11] 2(t) = Cpe—2:017t [2-255} 4 Cge—5-973t [—0-1993]
Original Linear Dynamics: Attractive Perturbed Linear Dynamics:
Improper Node Attractive Improper Node

37 37




Example 2 (a).

o) A -3 —6
X = AxX, A = [_1 _2]

Eigenvalues & eigenvectors:

A = 0,0y = [_12]

Ay = —5, {ig = m
General solutions:

2t) = O [‘12] 4+ Che 5t E’]

Original Linear Dyanmics: Attractive
Line of Equilibria
3_
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Example 2 (a).

=/ — _ _3 _6 =/ e _
x_Ax,A_[_l _2] X' = BX, B =

Eigenvalues & eigenvectors:

A = 0,0y = [_12]

Ay = —5, {ig = m
General solutions:

2t) = O [‘12] 4+ Che 5t E’]

Original Linear Dyanmics: Attractive
Line of Equilibria
3_

2 4
x2 1
o —~

_
-3 0 1/3




Example 2 (a).

S/ Ao -3 —6 S/ oo _|—3.09 —5.83
X =A%, A= [—1 —2] x =bx, B= [—0.98 —2.01]
Eigenvalues & eigenvectors: Eigenvalues & eigenvectors:
A1 = 0,41 = |:_2:| A~ —0.1,d1 ~ |:_1°95:|
1 1

Ao = —5, Uy = [i)] Ao & —5.0,U9 &~ |:3'105j|
General solutions: General solutions:
() = Oy [_12] 4 Cge 5t [i’] 2(t) = Cpe 01t [_11'95} 4 Cge— 50t [3'35]
Original Linear Dyanmics: Attractive Perturbed Linear Dynamics:

Line of Equilibria Attractive Improper Node

31 31
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Example 2 (b).

o) A -3 —6
X = AxX, A = [_1 _2]

Eigenvalues & eigenvectors:

A = 0,0y = [_12]

Ay = —5, {ig = m
General solutions:

2t) = O [‘12] 4+ Che 5t E’]

Original Linear Dyanmics: Attractive
Line of Equilibria
3_
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Example 2 (b).

=/ — _ _3 _6 =/ e _
x_Ax,A_[_l _2] X' = BX, B =

Eigenvalues & eigenvectors:

A = 0,0y = [_12]

Ay = —5, {ig = m
General solutions:

2t) = O [‘12] 4+ Che 5t E’]

Original Linear Dyanmics: Attractive
Line of Equilibria
3_
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Example 2 (b).

2 A= 4 [-3 -6 v e o [—3.09 —6.21
X =A% A= [—1 —2] X =Bx, B = [—0.96 —1.76]
Eigenvalues & eigenvectors: Eigenvalues & eigenvectors:
A1 = 0,41 = [_2] A~ 0.1,141 =~ [_1'95]

1 1
Ao = —5, Uy = [i)] Ao & —4.95, Uy &~ [3'33:|
General solutions: General solutions:
) = o [—12] 4 Che— 5t [ﬂ 2(t) = Cpe0lt [—11.95} 4 Cpe—4-950t [3.122]
Original Linear Dyanmics: Attractive Another Perturbed Linear Dynamics:

Line of Equilibria Saddle
31 31

-3 01/3 3 -2 0] 2
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Example 3 (a).

S/ A 1 5/2
X' = AX, A = [_2 _1]

Eigenvalues:
Al,2 = 124

Original Linear Dynamics:

Center
5.

)
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Example 3 (a).

S/ A 1 5/2
X' = AX, A = [_2 _1]

Eigenvalues:
Al,2 = 124

Original Linear Dynamics:

Center
5.

)
)

5 N\ \Q{@ 2

i’:Bi,B:[

1.04
—2.01

2.51
—0.95

|



Example 3 (a).

I i | 5/2 S s o [ 1.04 2.51
X =A%, A= [—2 —1] X =Bx, B = [—2.01 —0.95]
Eigenvalues: Eigenvalues:
A2 = 24 A1,2 &~ 0.045 + 2.014
Original Linear Dynamics: Perturbed Linear Dynamics:
Center Repulsive Focus
21 29
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Example 3 (b).

S/ A 1 5/2
X' = AX, A = [_2 _1]

Eigenvalues:
Al,2 = 124

Original Linear Dynamics:

Center
5.

)
)
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Example 3 (b).

S/ A 1 5/2
X' = AX, A = [_2 _1]

Eigenvalues:
Al,2 = 124

Original Linear Dynamics:

Center
5.

)
)

5 N\ \Q{@ 2

i’:Bi,B:[

0.97
—1.99

2.51
—1.02

|



Example 3 (b).

X' = AX, A = [_2 _1]
Eigenvalues:
Al,2 = 124

Original Linear Dynamics:

Center
5.

%)

g)z

X =Bx, B = [—1.99 —1.02]
Eigenvalues:

A12 &~ —0.025 & 2.001 5

Another Perturbed Linear
Dynamics: Attractive Focus
)




The Morals of the Story:

“Neutral” eigenvalues (A =0 or Re A = 0)
are the sources of structural instability.

If the system has neutral eigenvalues, a tiny change in the diff
eqs may alter the phase portrait completely.

Other “non-neutral” eigenvalues
give structural stable dynamics.

If the system has no neutral eigenvalues, small changes in diff
eqs will not change the dynamics radically € will only give an
equivalent phase portrait.



Linear Perturbation Theorems:

Theorem 1. If A has a neutral eigenvalue (A =0 or Re A = 0),
then the dynamics are sensitive to the coeff. perturbations.

In this case, for some matrices B ~ A,

the dynamics of may be radically the dynamics of
%X = AX different from %X = BX
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Theorem 2. If all eigenvalues of A have nonzero real parts,
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In this case, for any matrix B =~ A,

the dynamics of are essentially the dynamics of
%X = AX equivalent to %X = BX
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then the equilibrium is asymp. stable not only for X' = AX,
but is also asymp. stable for X' = BX for all B ~ A.




Linear Perturbation Theorems:

Theorem 1. If A has a neutral eigenvalue (A =0 or Re A = 0),
then the dynamics are sensitive to the coeff. perturbations.

In this case, for some matrices B ~ A,

the dynamics of may be radically the dynamics of
%X = AX different from %X = BX

Theorem 2. If all eigenvalues of A have nonzero real parts,
then the dynamics are robust to the coefficient
perturbations.

In this case, for any matrix B =~ A,

the dynamics of are essentially the dynamics of

%X = AX equivalent to %X = BX

Theorem 3. If all eigenvalues of A have real parts < 0,
then the equilibrium is asymp. stable not only for X' = AX,
but is also asymp. stable for X' = BX for all B ~ A.

Theorem 4. If at least one eigenvalue of A has real part > 0,
then the equilibrium is unstable not only for X' = AX,
but is also unstable for X' = BX for all B ~ A.



Nonlinear Perturbation Theorems:

If all eigenvalues of A have nonzero real parts,
then the local dynamics are robust to nonlinear
perturbations.




Nonlinear Perturbation Theorems:

If all eigenvalues of A have nonzero real parts,
then the local dynamics are robust to nonlinear
perturbations.

—

In this case, for f(X) ~ A(X — a) for X ~ a,

the local dynamics of are essentially the local dynamics of
=2/

X' = A(X — &) near X ~ a equivalent to % = f(X) near X ~ &
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If A has a neutral eigenvalue,
then the local dynamics are sensitive to nonlin.

perturbations.
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X' = A(X — a) near X ~ a

are essentially
equivalent to

the local dynamics of

—

%' = f(X) near X ~ &

If A has a neutral eigenvalue,
then the local dynamics are sensitive to nonlin.

perturbations.

In this case, for f(X) ~ A(X — &) for X ~ &,

the local dynamics of

X' = A(X — d) near X ~ a

may be radically
different from

the local dynamics of

%' = f(X) near X ~ &




Nonlinear Perturbation Theorems:

If all eigenvalues of A have nonzero real parts,
then the local dynamics are robust to nonlinear

perturbations.

—

In this case, for f(X) ~ A(X — a

the local dynamics of

3/

X' = A(X — a) near X ~ a

) for X =~ &,

are essentially
equivalent to

the local dynamics of

—

%' = f(X) near X ~ &

If A has a neutral eigenvalue,
then the local dynamics are sensitive to nonlin.

perturbations.
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%' = f(X) near X ~ &
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Nonlinear Perturbation Theorems:

If all eigenvalues of A have nonzero real parts,
then the local dynamics are robust to nonlinear

perturbations.

—

In this case, for f(X) ~ A(X — a) for X ~ a,

the local dynamics of

3/

X' = A(X — a) near X ~ a

are essentially
equivalent to

the local dynamics of

—

%' = f(X) near X ~ &

If A has a neutral eigenvalue,
then the local dynamics are sensitive to nonlin.

perturbations.

In this case, for f(X) ~ A(X — &) for X ~ &,

the local dynamics of

X' = A(X — d) near X ~ a

may be radically
different from

the local dynamics of

—

%' = f(X) near X ~ &

If all eigenvalues of A have real parts < 0,

then X = & is asymp. stable for X' = f(X) as long as

f(X) ~ A(X — &) near X ~ a.

If at least one eigenvalue of A has real part > 0,
then X = a is unstable for X' = f(X) as long as f(X) ~ A(X — a)

near X ~ a.




Example 4. (Nonlinear perturbation)

) | 5zt b2
x5, | 321 — 9z9

Linear Dynamics
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Example 4. (Nonlinear perturbation)

) 5x1 + bxo ) | 571+ 5x2 —Swiwo
x5, | 321 — 9z9 Tt | 321 — 9z9 +9$% — 3:13%

Linear Dynamics Nonlinear Dynamics

f
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Example 4. (Nonlinear perturbation)

) 5x1 + bxo ) | 571+ 5x2 —Swiwo
x5, | 321 — 9z9 Tt | 321 — 9z9 +9a:% — 3:1:%

Linear Dynamics Nonlinear Dynamics

f

5

Near the equilibrium (0,0): The perturbation terms are almost negligible & the
two phase portraits are locally equivalent.



Example 4. (Nonlinear perturbation)

) 5x1 + bxo
x5, 3x1 — 9x9
Linear Dynamics
5

) 5x1 + bxo —bx1xo
Tt | 321 — 9z9 +9a:% — 3:1:%

Nonlinear Dynamics

f

-2

Near the equilibrium (0,0):

0 1

A\

The perturbation terms are almost negligible & the

two phase portraits are locally equivalent.

Far from (0,0): The red terms are no longer small. The two phase portraits are

globally non-equivalent.



The Linear Approximating System near an equilibrium
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The Linear Approximating System near an equilibrium

% = {(®) [5’3’1] _ [fl(”fl’@)].

4 fo(x1, z2)

> Find equilibria, by solving f(%) = 0, that is, {2&3 3 o



The Linear Approximating System near an equilibrium

%' = f(%) [5”3] S [fl(xl’@)].

37,2 f2(x17x2)

» Find equilibria, by solving f(X) = 0, that is, {2 Eii: i;; i 8

» Near an equilibria & = (a1, as), take a linear approximation:

> fi(z1,22) ~ ,
fi(a1,az2) + 8—£(a1,a2)(:1:1 —ay) + a—{g(ah@)(ﬂ?z — as)



The Linear Approximating System near an equilibrium
37/1 _ fl (3717 xQ)
o fa(x1,22)|

» Find equilibria, by solving F(f(’) — 0, that is, {fl (r1,22) =0

fa(z1,22) =0

» Near an equilibria & = (a1, a2), take a linear approximation:

> fi(z1,22) = fl (a1, a2)(T1 —a1) + awl (a1,a2)(z2 — asz)



The Linear Approximating System near an equilibrium

=i [4]=[pen]

. el e . o/ . f1($1 582):0

» Find equilibria, by solving f(xX) = 0, that is, ’
q y g ( ) {f2(331,5132)=0
» Near an equilibria & = (a1, as), take a linear approximation:
> fi(z1,22) = fl (a1, a2) (1 —a1) + axl (a1,a2)(z2 — as)

> fa(w1,z2) ~ ,
falar,az) + 8—3]2(&1,@)(3?1 —a1) + 3—562(&1&2)(3?2 — az)



The Linear Approximating System near an equilibrium

/
2! — f(% L1 _ fi(z1, x2) .
T =1X) [93'2] [fz(ﬂfla z2)
. o1 . . 2 . f1(331,332)=0
» Find libria, by sol f(X) = 0, that is,
ind equilibria, by solving f(X) at is {fz (1. 22) = 0
» Near an equilibria & = (a1, a2), take a linear approximation:
> fi(z1,22) = 29{1 (a1,a2)(r1 —a1) + awl (a1,a2)(z2 — asz)

> fo(w1, m2) & 52 (a1, a2) (21 — a1) + 92 (a1, az)(x2 — a)



The Linear Approximating System near an equilibrium
37/1 _ fl (3717 xQ)
o fa(x1,22)|

» Find equilibria, by solving F(f(’) — 0, that is, {fl (r1,22) =0

fa(z1,22) =0

» Near an equilibria & = (a1, a2), take a linear approximation:
> fi(z1,22) = fl (al, az)(r1 —ai) + awl (a1,a2)(z2 — asz)

> fa(w1,22) & f2 2 (a1, a2) (21 — a1) + 922 (a1, az)(x2 — a2)

» The linear approx system near equilibrium (a1, as) is:

T = aii (a1,az2)(r1 —a1) + afl (a1, a2)(r2 — az)

vh = 52 (ay, a2)(v1 — a1) + 92 (a1, a2)(x2 — a2)



The Linear Approximating System near an equilibrium
37/1 _ f1(3717552)

Th fa(x1,22)|

» Find equilibria, by solving f (X) = 0, that is, {

fi(z1,22) =0
fa(z1,22) =0

» Near an equilibria & = (a1, a2), take a linear approximation:
> fi(z1,22) = fl (al, az)(r1 —ai) + awl (a1,a2)(z2 — asz)

> fa(w1,22) & f2 2 (a1, a2) (21 — a1) + 922 (a1, az)(x2 — a2)

» The linear approx system near equilibrium (a1, as) is:

Ty = aifl (a1,a2)(r1 —ar) + afl (a1,a2)(r2 — az)

vh = 52 (ay, a2)(v1 — a1) + 92 (a1, a2)(x2 — a2)

» Or, equivalently, the linear approx system is:
X' = J(X —a),
8;;11 (ala &2) 8;3(; (&1, a’2)

where J = is the Jacobian matrix.

8£2 (a17 0,2) a;? (&1, CLQ)




Example 5.

_ —x1 — X2 fi(z1,22) = —x1 — 22
w1 — Txo + :E% — 3x1x9 fg(xl,fvg) =x1 — Txo + :C% — 3179

Find all equilibria.

For each equilibrium, give the linear approximating system near
it.
Sketch the phase portrait of the linear approximating system.

Determine whether each equilibrium is stable or unstable with
respect to the nonlinear system.



Example 5. Find equilibria.

} . [ml —X1 — X2 ] { fi(z1,22) = —x1 — 2

— Txo + :c% — 3z1x9 fa(x1,22) =x1 — Tx2 + x% — 3x1x9



Example 5. Find equilibria.

[96’1} - [ —T1 — T2 ] { fi(z1,z2) = —21 — 22
zo|  |x1— Tz2 + :c% — 3x179 fa(x1,22) =x1 — Tx2 + x% — 3x129
fi(x1,22) =0

e Find equilibria, by solving F()Z’) = 0, that is, {f2(x17 Ta) = 0



Example 5. Find equilibria.

[z:l} _ [ —x1 — T2 ] { fi(z1,m2) = —x1 — T2
2

x1 — Txo + :c% — 3x1x9 fa(x1,22) =x1 — Tx2 + x% — 3x1x9

e Find equilibria, by solving F()Z’) = 0, that is, {ggii: ii; i 8

{ (1) —x1—22=0

(2) x1—Txo + 23 — 31122 =0



Example 5. Find equilibria.

] —T1 — T2 fi(x1,x2) = —x1 — x2
zo| |1 — Tz2 —1—33% — 3x179 fa(x1,22) = x1 — T2 —1—9[3% — 3x17x9
. e . . 2 . f1($1 332):()
e F'ind equilibria, by solving f(X) = 0, that is, ’
q y g £(X) {b@u@%zO

{(U —x1 —22=0

(2) x1—Txo + 23 — 31122 =0

From (1), 9 = —x1.
Substitute this in (2): 8x1 + 427 =0 = 21 =0, or 1 = —2.



Example 5. Find equilibria.

B:l} _ [ —x1 — T2 ] { fi(z1,m2) = —x1 — T2
2

x1 — Txo + x% — 3x1x9 fa(x1,22) =x1 — Tx2 + x% — 3x1x9

fi(zi,22) =0

e Find equilibria, by solving F(f(’) = 0, that is, {f2($1, Ta) = 0

{ (1) —x1—22=0

(2) x1—Txo + 23 — 31122 =0

From (1), 9 = —x1.
Substitute this in (2): 8x1 + 427 =0 = 21 =0, or 1 = —2.

Combined with o = —x7:

= Two equilibria: (z1,x3) = (0,0), (z1,z2) = (—2,2).



Example 5. Linear approximating system near the
equilibrium (0, 0).

i —x1 — X2 fi(z1,22) = —x1 — T2
zo| X1 — Tz + :Jc% — 3x179 fo(x1,x2) =1 — Tx2 + x% — 3x129

e T'wo equilibria: (x1,22) = (0,0), (x1,22) = (—2,2).



Example 5. Linear approximating system near the

equilibrium (0, 0).
i —x1 — X2 fi(z1,22) = —x1 — T2
x| 231—-7$2-+1E%—-3$1$2 jb(xl,xg):::rl—-7x2-+wr%——3x1x2
e T'wo equilibria: (x1,22) = (0,0), (x1,22) = (—2,2).

e Calculate the Jacobian matrix

o7 o,
7 8:1:11 8:13; —1 —1
B Of2  Of B 1 — 3x9 —7 — 311 + 229
| Ox1  Oza |



Example 5. Linear approximating system near the
equilibrium (0, 0).

[33’1} - [ —T1 — T2 ] { fi(z1,z2) = —x1 — 22

x| 231—-7$2-+ﬁﬁ%—-3$1$2 jb(wl,xg):::rl—-7x2-+wr%——3x1x2
e T'wo equilibria: (x1,22) = (0,0), (x1,22) = (—2,2).

e Calculate the Jacobian matrix

o7 o,
7 8:1:11 8:13; —1 —1
B Of2  Of B 1 — 3x9 —7 — 311 + 229
| Ox1  Oza |

e Near the equilibrium (0, 0), construct a linear approx. system:



Example 5. Linear approximating system near the

equilibrium (0, 0).
i —x1 — X2 fi(z1,22) = —x1 — T2
x| :Dl—-7$2-+ﬁﬁ%—-3$1$2 jb(ml,xg):::rl—-7x2-+wr%——3x1x2
e T'wo equilibria: (x1,22) = (0,0), (x1,22) = (—2,2).

e Calculate the Jacobian matrix

o7 o,
7 8:1:11 8:13; —1 —1
B Of2  Of B 1 — 3x9 —7 — 311 + 229
| Ox1  Oza |

e Near the equilibrium (0, 0), construct a linear approx. system:

» Evaluate J at equilibrium (z1,z3) = (0,0): J = [_11 :;]



Example 5. Linear approximating system near the

equilibrium (0, 0).
i —x1 — X2 fi(z1,22) = —x1 — T2
x| :ﬁl—-7$2-+ﬁﬁ%—-3$1$2 jb(ml,xg):::rl—-7x2-+wr%——3x1x2
e T'wo equilibria: (x1,22) = (0,0), (x1,22) = (—2,2).

e Calculate the Jacobian matrix

o7 o,
7 8:1:11 8:13; —1 —1
B Of2  Of B 1 — 3x9 —7 — 311 + 229
| Ox1  Oza |

e Near the equilibrium (0, 0), construct a linear approx. system:

» Evaluate J at equilibrium (z1,z3) = (0,0): J = [_11 :;]

» The linear approximating system near (0, 0) is:

i a1



Example 5. Dynamics near (0,0).
i | —x1 — X9 fi(x1,22) = —x1 — 2
zh|  |z1 — Tz + a:% — 3x1x9 fo(x1,x2) = x1 — Tx2 + :13% — 3x1x9
e Two equilibria: (x1,z2) = (0,0), (x1,72) = (—2,2).

" -1 -1 4
e Linear approx system near (0,0): X' = [ 1 _7] X



Example 5. Dynamics near (0,0).
i | —x1 — X9 fi(x1,22) = —x1 — 2
zh|  |z1 — Tz + a:% — 3x1x9 fo(x1,x2) = x1 — Tx2 + :13% — 3x1T9
e Two equilibria: (x1,z2) = (0,0), (x1,72) = (—2,2).

" -1 -1 4
e Linear approx system near (0,0): X' = [ 1 _7] X

M= —d42vE <0, @ = |0 T2V
e Figenvalues & eigenvectors: 3 _ 93]

Ao = —4—2v/2<0, ty =




Example 5. Dynamics near (0,0).

i | —x1 — X9 fi(x1,22) = —x1 — 2
zh|  |z1 — Tz + a:% — 31172 fo(x1,x2) = x1 — Tx2 + :13% — 3x172

e Two equilibria: (x1,z2) = (0,0), (x1,72) = (—2,2).

" -1 -1 4
e Linear approx system near (0,0): X' = [ 1 _7] X

A= —44+2v/2<0, U 3+12\/§,

e Figenvalues & eigenvectors: = -
)\2:—4—2\/§<0, Us = 3-2V2

1

e Thus, (0,0) is an attractive node & is asymptotically stable in the linear
dynamics.



Example 5. Dynamics near (0,0).

i | —x1 — X9 fi(x1,22) = —x1 — 2
zh|  |z1 — Tz + a:% — 3x1x9 fo(x1,x2) = x1 — Tx2 + :13% — 3x1T9
e Two equilibria: (x1,z2) = (0,0), (x1,72) = (—2,2).
=/

-1 —1f
e Linear approx system near (0,0): X' = [ ] _7] X

A= —4+2V2<0, @ 3+12\/§ :
e Figenvalues & eigenvectors: = -
)\2:—4—2\/§<0, o = 3_2\/5

1

e Thus, (0,0) is an attractive node & is asymptotically stable in the linear
dynamics.

e Since the eigenvalues are not neutral,
the nonlinear dynamics are equivalent to the linear dynamics near (0, 0).



Example 5. Dynamics near (0,0).

i | —x1 — X9 fi(x1,22) = —x1 — 2
zh|  |z1 — Tz + a:% — 3x1x9 fo(x1,x2) = x1 — Tx2 + :13% — 3x1T9
e Two equilibria: (x1,z2) = (0,0), (x1,72) = (—2,2).

" -1 -1 4
e Linear approx system near (0,0): X' = [ 1 _7] X

A= —4+2V2<0, @ 3+12\/§ :
e Figenvalues & eigenvectors: = -
)\2:—4—2\/§<0, o = 3_2\/5

1

e Thus, (0,0) is an attractive node & is asymptotically stable in the linear
dynamics.

e Since the eigenvalues are not neutral,
the nonlinear dynamics are equivalent to the linear dynamics near (0, 0).

e Equilibrium (0, 0) is asymptotically stable with respect to the original
nonlinear system.



Example 5. Dynamics near (—2,2).

| —T1 — T2 fi(x1,x2) = —x1 — x2
:c’2 ey — Tz + az% — 3x1719 fo(x1,x2) = x1 — Tx2 + a:% — 3x12x9

e Two equilibria: (x1,2z2) = (0,0), (x1,22) = (—2,2).



Example 5. Dynamics near (—2,2).
| —T1 — T2 fi(x1,x2) = —x1 — x2
:c’2 ey — Tz + az% — 3x1719 fo(x1,x2) = x1 — Tx2 + a:% — 3x12x9
e Two equilibria: (x1,2z2) = (0,0), (x1,22) = (—2,2).

e Evaluate J at (x1,72) = (—2,2): J = [:é _31]



Example 5. Dynamics near (—2,2).
| —T1 — T2 fi(x1,x2) = —x1 — x2
:c’2 ey — Tz + az% — 3x1719 fo(x1,x2) = x1 — Tx2 + a:% — 3x12x9
e Two equilibria: (x1,2z2) = (0,0), (x1,22) = (—2,2).

e Evaluate J at (x1,72) = (—2,2): J = [:é _31]

/ —1 -1 2
e Linear approx system near (—2,2): lil ] - [ ] [xl - ]
2



Example 5. Dynamics near (—2,2).

) _ —T1 — T2 fi(x1,x2) = —x1 — x2
:c’2 xr1 — Txo + az% — 3x1719 fo(x1,x2) = x1 — Tx2 + a:% — 3x12x9
e Two equilibria: (x1,2z2) = (0,0), (x1,22) = (—2,2).

e Evaluate J at (x1,z2) = (—2,2): J = [_1 _1]



Example 5. Dynamics near (—2,2).

) _ —T1 — T2 fi(x1,x2) = —x1 — x2
:c’2 xr1 — Txo + x% — 3x1719 fo(x1,x2) = x1 — Tx2 + a:% — 3x12x9
e Two equilibria: (x1,2z2) = (0,0), (x1,22) = (—2,2).

e Evaluate J at (x1,z2) = (—2,2): J = [_1 _1]

e Linear approx system near (—2,2): [

e Eigenvalues & eigenvectors:

e Thus, (—2,2) is a saddle & is unstable in the linear dynamics.



Example 5. Dynamics near (—2,2).

) _ —T1 — T2 fi(x1,x2) = —x1 — x2
:c’2 xr1 — Txo + x% — 3x1719 fo(x1,x2) = x1 — Tx2 + a:% — 3x12x9
e Two equilibria: (x1,2z2) = (0,0), (x1,22) = (—2,2).

e Fvaluate J at (961,5182) = (—272): J = [:é _31]

|

)\1 — 47 l_il — |:_]i/5:| ’

S 1
)\2 = —2, U — [1:|

X
X

[\D\ [

e Linear approx system near (—2,2): [

e Eigenvalues & eigenvectors:

e Thus, (—2,2) is a saddle & is unstable in the linear dynamics.

e Since the eigenvalues are not neutral,
the nonlinear dynamics are equivalent to the linear dynamics near (—2,2).



Example 5. Dynamics near (—2,2).

) _ —T1 — T2 fi(x1,x2) = —x1 — x2
:c’2 xr1 — Txo + x% — 3x1719 fo(x1,x2) = x1 — Tx2 + a:% — 3x12x9
e Two equilibria: (x1,2z2) = (0,0), (x1,22) = (—2,2).

e Fvaluate J at (961,5182) = (—272): J = [:é _31]

|

)\1 — 47 l_il — |:_]i/5:| ’

S 1
)\2 = —2, U — [1:|

X
X

[\D\ [

e Linear approx system near (—2,2): [

e Eigenvalues & eigenvectors:

e Thus, (—2,2) is a saddle & is unstable in the linear dynamics.

e Since the eigenvalues are not neutral,
the nonlinear dynamics are equivalent to the linear dynamics near (—2,2).

e Equilibrium (—2,2) is also a saddle with respect to the original nonlinear
system & it is unstable.



Example 5. Since all the eigenvalues are non-neutral,
Linear approx dynamics = Nonlinear local dynamics near equilibria

Linear Approx Dynamics Near (-2,2) Linear Approx Dynamics Near (0,0

i




Example 5. Since all the eigenvalues are non-neutral,
Linear approx dynamics = Nonlinear local dynamics near equilibria

Linear Approx Dynamics Near (-2,2) Linear Approx Dynamics Near (0,0

i

Nonlinear Dynamics Near Equilibria




Example 5. GGlobal phase portrait of the nonlinear system

Nonlinear Dynamics




Example 5. GGlobal phase portrait of the nonlinear system

Nonlinear Dynamics




Example 6 (Neutral Eigenvalue)

/
{ T = 2w129 + 75 — X3 + 27

/I 2
Ty = —T2 + X7

» Find all equilibria.

» For each equilibrium, give the linear approximating system near
it.

» Sketch the phase portrait of the linear approximating system.

» Determine whether each equilibrium is stable or unstable with
respect to the nonlinear system.



Example 6 (continued). Find equilibria.

{ Ty = 2x109 + 23 — 2% + 27

/
Ty = —I9 —I—ZC%



Example 6 (continued). Find equilibria.

Ty = 2x109 + 23 — 2% + 27
rh = —x9 + 2%

fi(z1,z2) =

e Find equilibria, by solving £(X) = 0, that is, { Foliy, a9) =



Example 6 (continued). Find equilibria.

Ty = 2x109 + 23 — 2% + 27
rh = —x9 + 2%

fi(z1, x2)

e F'ind equilibria, by solving f (X) = 0, that is, { Folar, )

(1) 2z129 + 25 — 23 + 27 =0
(2) —332—|—33%:O



Example 6 (continued). Find equilibria.

Ty = 2x109 + 23 — 2% + 27
rh = —x9 + 2%

fi(z1,22) =0
0

e Find equilibria, by solving £(X) = 0, that is, {fz(m, Ty) =

(1) 2x1x90 +25 — 25 +23 =0
(2) — X9 -+ 33% =0
From (2), x5 = z%.

Substitute this in (1):
i+t =0=23(1+21+23)=0=21,=0



Example 6 (continued). Find equilibria.

Ty = 2x109 + 23 — 2% + 27
rh = —x9 + 2%

fi(z1,22) =0
0

e Find equilibria, by solving £(X) = 0, that is, {fz(xh Ty) =

(1) 2x1x90 +25 — 25 +23 =0
(2) — X9 -+ QZ% =0
From (2), x5 = z%.

Substitute this in (1):
i+t =0=23(1+21+23)=0=21,=0

From x5 = 7 it follows x5 = 0.

= Only one equilibrium: (z1,22) = (0,0).



Example 6 (continued).

Linear approx sys near the equilibrium (0, 0).

[:1:/1} _ [2331:132 + x5 —xf + CB?} { fi(z1,22) = 2z122 + 23 — T3 + 23
—I9Q ‘|‘33% f2(x17332) — —T9 _|_x%



Example 6 (continued).

Linear approx sys near the equilibrium (0, 0).

[wi} _ [2az1x2 + x5 —xf + CB?} { fi(z1,22) = 2z122 + 23 — T3 + 23
—I9Q ‘|‘33% f2($1,332) — —T9 _|_m%

» (Calculate the Jacobian matrix

-of o
7 89[:1 8:13; 209 — 333% —+ 5%41l 2x1 + 2x9
|8 Bfe| 211 —1
| Oz Ox2




Example 6 (continued).

Linear approx sys near the equilibrium (0, 0).

[wi} _ [2az1x2 + x5 —xf + m?} { fi(z1,22) = 2z122 + 23 — T3 + 23
—I9Q ‘|‘33% f2($1,332) — —T9 _|_m%

» (Calculate the Jacobian matrix

-of o
7 8901 833; 209 — 333% —+ 5%41l 2x1 + 2x9
|8 Bfe| 211 —1
| Oz Ox2

» Evaluate J at equilibrium (z1,z2) = (0,0): J = [O 0 ]



Example 6 (continued).

Linear approx sys near the equilibrium (0, 0).

[wi} _ [2az1x2 + x5 —xf + w?} { fi(z1,x2) = 2z100 + 22 — 23 + 2F

x4 —x2 + o7 fa(x1,22) = —w2 + 23

» (Calculate the Jacobian matrix

-of o
7 8301 833; 209 — 333% —+ 5113‘41l 2x1 + 2x9
|8 Bfe| 211 —1

| Oz Ox2

» Evaluate J at equilibrium (z1,x3) = (0,0): J = [8 _01]

» The linear approximating system near (0,0) is:

2=l Sl



Example 6. (continued)

Linear Approximate Dynamics near (0,0).

T _ 2$1£E2—|—CC% —x?—i—w? f1(x1,x2) :2:181:1324—33% —:U%—I—ac?
x5, —xo + a:% fo(x1,22) = —x2 + x%
: el . Ny 0
» Linear approx system near the equilibrium(0,0): X' = [ 1



Example 6. (continued)

Linear Approximate Dynamics near (0,0).

T _ 2$1£E2—|—CC% —x?—i—w? f1(x1,x2) :2:181:1324—33% —:U%—I—ac?
x5, —xo + a:% fo(x1,22) = —x2 + x%
: el . Ny 0O O
» Linear approx system near the equilibrium(0,0): X' = 0 1

> FKigenvalues & eigenvectors:

,
)\1:0, ﬁlz

)\2:—1<0, Us =

\



Example 6. (continued)

Linear Approximate Dynamics near (0,0).

1

8 8

M) S~

I |
|

o 2$1£E2—|—CC% —x?—i—w? f1(x1,x2) :2:181:1324—33% —:U%—I—ac?
—x9 + x2 f2(z1,22) = —w2 + 27

» Linear approx system near the equilibrium(0,0): X' = [8 _01] X

> FKigenvalues & eigenvectors:

( 1
Al = O, ﬁl — : Linear approximating dynamics:
_O_ Attractive line of equilibria
< o
A= —1<0, Uy = 1
\ e —

-
. o

» Thus, the linear approximate dynamics

has an attractive line of equilibria.

.
-




Example 6. (continued)

Linear Approximate Dynamics near (0,0).

1

8 8

M) S~

I |
|

o 2:1019024—:6% —x?—i—w? f1(x1,x2) :2:101:1324—33% —x%—l—w?
—x9 + x2 f2(z1,22) = —w2 + 27

» Linear approx system near the equilibrium(0,0): X' = [8 _01] X

> FKigenvalues & eigenvectors:

( 1
Al = O, ﬁl — : Linear approximating dynamics:
_O_ Attractive line of equilibria
< o
A= —1<0, Uy = 1
\ e —

-
. o

» Thus, the linear approximate dynamics

has an attractive line of equilibria.

.
-

» Since there is a neutral eigenvalue A\ = 0,
it is possible that the nonlinear dynamics
is non-equivalent to the linear dynamics

near (0,0).




Example 6. (continued)

Linear Approximate Dynamics near (0,0).

2:1019024—:6% —x?—i—w? f1(x1,x2) :2:101:1324—33% —x%—l—w?
—x9 + x2 f2(z1,22) = —w2 + 27

Linear approx system near the equilibrium(0,0): X' = [8 _01] X

Eigenvalues & eigenvectors:

( 1
Al = O, ﬁl — : Linear approximating dynamics:
_O_ Attractive line of equilibria
< o
A= —1<0, Uy = 1
\ e —

-
\

Thus, the linear approximate dynamics

has an attractive line of equilibria.

.
i

Since there is a neutral eigenvalue A1 = 0,
it is possible that the nonlinear dynamics
is non-equivalent to the linear dynamics
near (0,0).
In other words, the linear analysis fails to determine the local
nonlinear dynamics near (0, 0).




Example 6. (continued)

Linear approximating dynamics:

. Attractive line of equilibria
Linear approx system for (x1,x2) ~ (0,0): \
4

b 4

X'

{=

et { 20 illi



Example 6. (continued)

Linear approximating dynamics:

. Attractive line of equilibria
Linear approx system for (z1,x2) ~ (0,0): m }
J

o

X'

L=

>/>/

Eigenvalues {

ully

The following is an incomplete list of the
possible local phase portraits of the nonlinear system near (0, 0):

et cetera




Example 6. (continued)

Linear approximating dynamics:
Attractive line of equilibria

Linear approx system for (x1,x2) ~ (0,0):

b2 I

L=

X
Eigenvalues {

i

The following is an incomplete list of the
possible local phase portraits of the nonlinear system near (0, 0):

VYL A\

b | &

Wt \\

RaEw et cetera
/| 1 YT\ /'/////

] i

NN a

/] | an

To determine the correct picture, need advanced nonlinear theories:
normal forms, center manifolds,



Linear approximating dynamics:

EXample 6, (Continued) Attractive line of equilibria
Linear approx system for (z1,x2) =~ (0,0):

-
\ o

0 O}_(,
0 -1
0

X! =
: Al =
Eigenvalues { N — 1 <0

N
-y




Example 6. (continued)
Linear approx system for (z1,x2) =~ (0,0):
, 10 0|,
-l 4
A1 =0
A

X
Eigenvalues { L= 1<0

Linear approximating dynamics:
Attractive line of equilibria

-
\ o

4#7

The actual local phase portrait of
the nonlinear system near (0,0):

| _ |2z + 25 — 23 + 23
Th —T9 + 2%

Local phase portrait of nonlinear
dynamics: Unstable equilibrium

N




Linear approximating dynamics:

Example 6 . (C()nt inued) Attractive line of equilibria

Linear approx system for (x1,x2) =~ (0,0):

,oo}_(,
—1

-
\ o

X
Eigenvalues { !

l\D
I
|
| —
A\
-
— ey

Local phase portrait of nonlinear
dynamics: Unstable equilibrium

The actual local phase portrait of \j

the nonlinear system near (0,0):

| _ |2z + 25 — 23 + 23
Th —T9 + 2%

N

e Impossible to get this by the linear approximation alone.
e Advanced nonlinear tools (center manifolds, ...) can get us this
picture.



Example 7 (Neutral Eigenvalue)

1,..3

/ 1
r) = r1x0 + $23 + 2]
/
Ty = T2 + 57

» Give the linear approximating system near the equilibrium (0, 0).
Sketch the phase portrait of the linear approx system.

» Determine whether (0, 0) is stable or unstable with respect to the
nonlinear system.

» Sketch the local phase portrait of the nonlinear system near (0,0)



Example 7 (a) Linear approx system near (0,0).

1.3

1
[Qﬂ _ |zw2 + 5oyt
i f2($1,$2>:x2+§$1

1
T x2 + 5%?

{ fi(z1,z2) = z172 + %x‘;’ + xf



Example 7 (a) Linear approx system near (0,0).

1
[m’l} _ |z + gzlvg?jl—:céll
xro + 57

{ fi(z1,z2) = z172 + %x% + xf

fa(z1,m2) = z2 + 223

» (Calculate the Jacobian matrix

[ 0f1 Of1]
7 Ox1  Ouo T2 + 496? T1 + %x%
B 0f2 O f2 N §ZIJ% 1
_8331 8%2_ 2




Example 7 (a) Linear approx system near (0,0).

1
[m’l} _ |z + ngg?jl—:céll
xro + 57

{ fi(z1,z2) = z172 + %x% + xf

fa(z1,m2) = z2 + 223

» (Calculate the Jacobian matrix

[ O0f1  Of1]

7 Ox1  Ouo T2 + 496? T1 + %x%
0f2 O f2 N §ZIZ% 1
_8331 8%2_ 2

» Evaluate J at equilibrium (x1,2z2) = (0,0): J = [8 (f]



Example 7 (a) Linear approx system near (0,0).

1
[m’l} _ |z + ngg?jl—:céll
xro + 57

{ fi(z1,z2) = z172 + %x% + xf

fo(x1,x2) = x2 + %xi’

» (Calculate the Jacobian matrix

[ O0f1  Of1]

3
J B 0x1 Oxo o i) —|_ 4%? I “F 5:6%
0f2 O f2 %ZE% 1
| 0z Ox2 |

» Evaluate J at equilibrium (x1,2z2) = (0,0): J = [8 (f]

» The linear approximating system near (0,0) is:

=0 o L



Example 7 (a) Linear Approx Dynamics near
(0,0).

1 1
r122 + =25 + o] fi(x1,22) = z1we + s23 + 2]
572 1 52 1

L
|:£C/2] o [ To + %wi’ } { fo(x1,x2) = x2 + %xi’

» Linear approx system near the equilibrium(0, 0):

= o o) )



Example 7 (a) Linear Approx Dynamics near
(0,0).

1 1
| |r1ze + 5235 + o] fi(@y, @2) = w132 + 225 + 2]
P = 1 1
T2 + 57 fa(z1,22) = 22 + 523

» Linear approx system near the equilibrium(0, 0):
ar;’l o 0 0 X1
x5 |0 1| |2
» FEigenvalues & eigenvectors:
4 '1'
)\1 = 0, ﬁl —

Y

_O_
%
_1_



Example 7 (a) Linear Approx Dynamics near
(0,0).

{x’ll _ [x1x2 + fa5 + xil] { fi(z1, 22) = w122 + 223 + o}

Tt T2 + 53 fo(z1,z2) = 22 + 53

» Linear approx system near the equilibrium(0, 0):
ar;’l o 0 0 X1
x5 |0 1| |2

» FEigenvalues & eigenvectors:

( 1
A1 =0 U1 — Linear approximating dynamics:
1 9 1 Y]
< _O_ Repulsive line of equilibria
—_ 0
Ao =1>0, Uz = 1
\

.
i

» Thus, the linear approximate dynamics

has a repulsive line of equilibria.

.
o




Example 7 (a) Linear Approx Dynamics near
(0,0).

. 1
| |r1ze + 5235 + o] fi(@y, @2) = w132 + 225 + 2]
il = 1 1
x!, z2 + 323 fa(x1,22) = 2 + 7

» Linear approx system near the equilibrium(0, 0):
ac’l o 0 0 X1
x5 |0 1| |2

> Higenvalues & eigenvectors:

( 1
A1 =0, u;

Linear approximating dynamics:
Repulsive line of equilibria

Y

)\2:1>0, uo

_O_
%
_1_

\

.
i

» Thus, the linear approximate dynamics

has a repulsive line of equilibria.

.
o

» Since there is a neutral eigenvalue A\; = 0,
it is possible that the nonlinear dynamics
is non-equivalent to the linear dynamics

near (0,0).




Example 7. (b)(c) Local nonlinear dynamics
near (0,0)

Linear approximating dynamics:

. Repulsive line of equilibria
Linear approx system for (x1,x2) =~ (0,0): ' 1

r “]x il

X'

-

> >
||

Eigenvalues {

(neutral) |
e,



Example 7. (b)(c) Local nonlinear dynamics

near (0,0)

Linear approximating dynamics:
Repulsive line of equilibria

i

Linear approx system for (z1,x2) =~ (0,0):

g =0 Vg
1o 1

Eigenvalues { Ao =1>0 (instability)

A =0 (neutral) H
0

An incomplete list of possible nonlinear dynamics near (0

o
i

~

b




Example 7. (b)(c) Local nonlinear dynamics
near (0,0)

Linear approx system for (z1,x2) =~ (0,0):

=01 il

Linear approximating dynamics:
Repulsive line of equilibria

A =0 (neutral)
Ao =1>0 (instability)

Eigenvalues {

e Linear analysis alone cannot determine the correct picture.



Example 7. (b)(c) Local nonlinear dynamics
near (0,0)

Linear approx system for (z1,x2) =~ (0,0):

=01 il

Linear approximating dynamics:
Repulsive line of equilibria

A =0 (neutral)
Ao =1>0 (instability)

Eigenvalues {

e Linear analysis alone cannot determine the correct picture.

e But we do know (0,0) is unstable in the nonlinear system.



Example 7. (b)(c) Local nonlinear dynamics
near (0,0)

Linear approx system for (z1,x2) =~ (0,0):

o [0 0]
0 1

Linear approximating dynamics:
Repulsive line of equilibria

Fivenval A1 =0 (neutral)
SEIVATLES Ao =1>0 (instability)

e Linear analysis alone cannot determine the correct picture.
e But we do know (0,0) is unstable in the nonlinear system.

e Reason: since Ao = 1 > 0, solutions along this eigenspace will grow,
with the growth rate =~ 1, even in the nonlinear system.



E X am p ]. e 7 ° S u m m ar y. Linear approximating dynamics:

Repulsive line of equilibria

Linear approx system for (z1,x2) =~ (0,0):

; °]X *

X'

-

(neutral)
(instability)

>/>/

Eigenvalues {




Example 7. Summary.

Linear approx system for (z1,x2) =~ (0,0):

OO}_(,
0 1

0 (neutral)
1

R/ =
Ei 1 A1 =
BEIVATIES 1 A\, =1 >0 (instability)

Linear approximating dynamics:
Repulsive line of equilibria

-
-

e Since one of the eigenvalues is > 0,

the linear aprroximation = the nonlinear instability of (0,0).



E X am p ].e 7 ° S u m m ar y. Linear approximating dynamics:

Repulsive line of equilibria

Linear approx system for (z1,x3) =~ (0,0):

OO}_(,
0 1 1

-

0 (neutral)
1 >0 (instability)

.
o

X' =
Eigenvalues { A
A2

e Since one of the eigenvalues is > 0,

the linear aprroximation = the nonlinear instability of (0,0).
e Since one of the eigenvalues is = 0 (neutral),

the linear aprroximation #- the nonlinear local phase portrait.




Example 7. Summary.

Linear approximating dynamics:
Repulsive line of equilibria

Linear approx system for (z1,x3) =~ (0,0):
"y [0 o]
X X 1
. = (neutral)
Eigenvalues { _ (instability) 4

e Since one of the eigenvalues is > 0,

the linear aprroximation = the nonlinear instability of (0,0).
e Since one of the eigenvalues is = 0 (neutral),

the linear aprroximation #- the nonlinear local phase portrait.

Local phase portrait of nonlinear
dynamics: Unstable equilibrium

e Advanced nonlinear tools (center mani-
folds, ...) can give the local phase portrait
of the nonlinear system near (0,0):

Ty _ |71z + —I—x‘f
Th T2 + 2:161
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