First Order Autonomous Equations

— Linear Approximating Equations Near Equilibria
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Objective: Assume that a diffeq vy’ = f(y)
has an equilibrium y = b.  (In other words, f(b) = 0.)

We will see that the derivative  f/(b) can help to give

» Local Phase Portrait near y ~ b;
» Stability /Instability of Equilibrium y = b;

» Linear Approximating Diff Eqs near y =~ b.
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For y near O

Nonlinear Eq:
Lin Approx Eq:

y =y—y°
Y =y

Slope Fields for y near 0
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For y near 1
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e Give linear approximating equation for y near 0.
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e Sketch the local phase portrait near y = 0.

Solution:



Example 2: y’' =2+ 3y — 2e%.

e Verify that y = 0 is an equilibrium.

e Give linear approximating equation for y near 0.
e Determine whether y = 0O is stable or unstable.
e Sketch the local phase portrait near y = 0.

Solution: f(y) =2+ 3y — 2e%Y, f/(y) =3 — 8eV.



Example 2: y’' =2+ 3y — 2e%.

e Verify that y = 0 is an equilibrium.

e Give linear approximating equation for y near 0.
e Determine whether y = 0O is stable or unstable.
e Sketch the local phase portrait near y = 0.

Solution: f(y) =2+ 3y — 2e%Y, f/(y) =3 — 8eV.



Example 2: y’' =2+ 3y — 2e%.

e Verify that y = 0 is an equilibrium.

e Give linear approximating equation for y near 0.
e Determine whether y = 0O is stable or unstable.
e Sketch the local phase portrait near y = 0.

Solution: f(y) =2+ 3y — 2e%Y, f/(y) =3 — 8eV.

_ Lin Approx E
f(O) =0 } = [ for ypﬁe?;lr OOl ]
_ ;o

y' = —dy



Example 2: y’' =2+ 3y — 2e%.

e Verify that y = 0 is an equilibrium.

e Give linear approximating equation for y near 0.
e Determine whether y = 0O is stable or unstable.
e Sketch the local phase portrait near y = 0.

Solution: f(y) =2+ 3y — 2e%Y, f/(y) =3 — 8eV.
Nonlin Local Phase Portrait

for y near 0O

— Lin Approx Eq
f/(og ——O . } = for y near 0O = f(y)
£'(0) = - e il

y = 0 is asymp stable (attractive)



Example 2: y’' =2+ 3y — 2e%.

e Verify that y = 0 is an equilibrium.

e Give linear approximating equation for y near 0.
e Determine whether y = 0O is stable or unstable.
e Sketch the local phase portrait near y = 0.

Solution: f(y) =2+ 3y — 2e%Y, f/(y) =3 — 8eV.
Nonlin Local Phase Portrait

for y near 0O

— Lin Approx E

f(O) =0 } = [ for yplr)le?;\r Oq ] = /()
— ;o

y' = —dy S

y = 0 is asymp stable (attractive)

Another Approach: Look at the signs of f(y) at y =0,y =1,y = —1.



Example 2: y’' =2+ 3y — 2e%.

e Verify that y = 0 is an equilibrium.

e Give linear approximating equation for y near 0.
e Determine whether y = 0O is stable or unstable.
e Sketch the local phase portrait near y = 0.

Solution: f(y) =2+ 3y — 2e%Y, f/(y) =3 — 8eV.
Nonlin Local Phase Portrait

for y near 0O

— Lin Approx E

f(O) =0 } = [ for ypﬁe(;r Oq ] = /()
— ;o

y' = -5y S

y = 0 is asymp stable (attractive)

Another Approach: Look at the signs of f(y) at y =0,y =1,y = —1.
f(0)=0
f(1)=5—-2e* <0
f(-1)=—-1—-2e"*<0



Example 2: y’' =2+ 3y — 2e%.

e Verify that y = 0 is an equilibrium.

e Give linear approximating equation for y near 0.
e Determine whether y = 0O is stable or unstable.
e Sketch the local phase portrait near y = 0.

Solution: f(y) =2+ 3y — 2e%Y, f/(y) =3 — 8eV.
Nonlin Local Phase Portrait

for y near 0O

— Lin Approx E

f(O) =0 } = [ for ypﬁe(;r Oq ] = /()
— ;o

y' = -5y S

y = 0 is asymp stable (attractive)

Another Approach: Look at the signs of f(y) at y =0,y =1,y = —1.
f(O) —0 Phase Portrait
f(1)=5—-2e* <0 = —<—<—

_ 0 'y
f(=1)=—-1-—2e 1<0 y = 0 is unstable (semi-stable)



Example 2: y’' =2+ 3y — 2e%.

e Verify that y = 0 is an equilibrium.

e Give linear approximating equation for y near 0.
e Determine whether y = 0O is stable or unstable.

e Sketch the local phase portrait near y = 0.

Solution: f(y) =2+ 3y — 2e%Y, f/(y) =3 — 8eV.
Nonlin Local Phase Portrait
for y near 0O
Lin A E
£(0) =0 } . [ o Approx Ba ] N /0
— ;o

y' = -5y S

y = 0 is asymp stable (attractive)

Another Approach: Look at the signs of f(y) at y =0,y =1,y = —1.

f(O) — 0 Phase Portrait
f(1)=5—-2e* <0 = <<
f(=1)=-1- 2¢=* <0 y = 0 is unstable (semi-stable)

WHAT'S WRONG?



Example 2: y’' =2+ 3y — 2e%.

e Verify that y = 0 is an equilibrium.

e Give linear approximating equation for y near 0.
e Determine whether y = 0O is stable or unstable.
e Sketch the local phase portrait near y = 0.

Solution: f(y) =2+ 3y — 2e%Y, f/(y) =3 — 8eV.
Nonlin Local Phase Portrait
for y near 0O
Lin A E
£(0) =0 } . [ o Approx Ba ] N /0
— ;o

y' = —dy S

y = 0 is asymp stable (attractive)

Another Approach: Look at the signs of f(y) at y =0,y =1,y = —1.

f(O) — 0 Phase Portrait
f(1)=5—-2e* <0 = <<
f(=1)=-1- 2¢=* <0 y = 0 is unstable (semi-stable)

WHAT'S WRONG?
Secret:
There is another equilibrium b = —0.608 - - -



Example 2: y’' =2+ 3y — 2e%.

e Verify that y = 0 is an equilibrium.

e Give linear approximating equation for y near 0.
e Determine whether y = 0O is stable or unstable.
e Sketch the local phase portrait near y = 0.

Solution: f(y) =2+ 3y — 2e%Y, f/(y) =3 — 8eV.

Nonlin Local Phase Portrait

for y near 0O
Lin A E
£(0) =0 } :,[ ] N /0
— ;o
y' = —dy S

y = 0 is asymp stable (attractive)

Another Approach: Look at the signs of f(y) at y =0,y =1,y = —1.

f(O) — 0 Phase Portrait
f(1)=5—-2e* <0 = <<
f(=1)=-1- 2¢=* <0 y = 0 is unstable (semi-stable)

WHAT'S WRONG?
Secret: The True Global Phase Portrait

There is another equilibrium b = —0.608 - - -




Example 2: y’' =2+ 3y — 2e%.

e Verify that y = 0 is an equilibrium.

e Give linear approximating equation for y near 0.
e Determine whether y = 0O is stable or unstable.
e Sketch the local phase portrait near y = 0.

Solution: f(y) =2+ 3y — 2e%Y, f/(y) =3 — 8eV.
Nonlin Local Phase Portrait
for y near 0O
_ Lin Approx E
f(O) =0 = for yplr)le?;\r 0 4 = /()
f'(0) = -5 r_—

y' = —dy S

y = 0 is asymp stable (attractive)

Another Approach: Look at the signs of f(y) at y =0,y =1,y = —1.
f(O) —0 Phase Portrait

f(1)=5—-2e* <0 =
f(-1)=—-1—-2e"*<0

WHAT'S WRONG?
Secret:
There is another equilibrium b = —0.608 - - -



xy
Pencil

xy
Pencil


Example 2: y’' =2+ 3y — 2e%.

e Verify that y = 0 is an equilibrium.

e Give linear approximating equation for y near 0.
e Determine whether y = 0O is stable or unstable.
e Sketch the local phase portrait near y = 0.

Solution: f(y) =2+ 3y — 2e%Y, f/(y) =3 — 8eV.
Nonlin Local Phase Portrait

for y near 0O

— Lin Approx Eq
f/(og ——O . } = for y near 0O = f(y)
£'(0) = - e il

y = 0 is asymp stable (attractive)

Another Approach: Look at the signs of f(y) at y =0,y =1,y = —1.
f(O) —0 Phase Portrait

f(1)=5—-2e* <0 =
f(-1)=—-1—-2e"*<0

WHAT'S WRONG?
Secret: The True Global Phase Portrait

There is another equilibrium b = —0.608 - - - ()

Lesson: The linear approximation
gives local dynamics only.

Lesson: For global dynamics,
need to analyse all equilbria.
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Lesson: When f(b) =0 and f/(b) = 0, the linear approximation alone is
insufficient in determining the nonlinear local phase portrait near y ~ b.

The following is an incomplete list
of the possible local pictures when f(b) = 0 and f’(b) = O:

> o—— <—e <
b Y b Y
> ° < > e <
b y b y
=
b y b y

7@9%7 et cetera
b y

use higher degree approximations,

To determine the correct picture, study the signs of f(y),
or use other more advanced methods.




