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Objective: Assume that a diff eq y ′ = f(y)
has an equilibrium y = b. (In other words, f(b) = 0.)

We will see that the derivative f ′(b) can help to give

◮ Local Phase Portrait near y ≈ b;

◮ Stability/Instability of Equilibrium y = b;

◮ Linear Approximating Diff Eqs near y ≈ b.
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⇒ Linear approximation near b:

f(y) ≈ f(b) + f ′(b)(y − b) for y near b.
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A Comparison of the Nonlinear Eq & Linear Approx Eqs

For y near 0


Nonlinear Eq: y′ = y − y3

Lin Approx Eq: y′ = y

For y near 1


Nonlinear Eq: y′ = y − y3

Lin Approx Eq: y′ = −2(y − 1)
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⇓



Lesson: When f(b) = 0 and f ′(b) = 0, the linear approximation alone is
insufficient in determining the nonlinear local phase portrait near y ≈ b.

The following is an incomplete list
of the possible local pictures when f(b) = 0 and f ′(b) = 0:

To determine the correct picture,
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:

use higher degree approximations,
study the signs of f(y),
or use other more advanced methods.


