Nonhomogeneous Linear Systems of Differential Equations
with Constant Coefficients

Objective: Solve

di —
— = AX+f(¢
= = ax i),
. fi(®)
where A is an n X n constant coefficient matrix A and f(¢) = : is a given vector function.
(1)
T (t)
The unknown is X(t) = :
(1)

Solution Formula Using Fundamental Matrix: Suppose that M (¢) is a fundamental matrix
solution of the corresponding homogeneous system X’(t) = AX(¢); in other words,

o M (t) satisfies M'(t) = AM(t); that is, every column of M (t) solves the homoge-
neous system X'(t) = AX(t);

e M(t) is an invertible matrix for every ¢; that is, the n columns of M(t) are
linearly independent.

The general solutions of the nonhomogeneous system dx/dt = AX + f (t) are
Ch ; B
X(t)=M(t) | : +/ M(t)M(s)" £(s)ds,
Ch

where C,- -, C, are arbitrary constants.
The solution of the initial value problem
dax Lz S -
O Ax+ f(t), =X(to) =Xo
dt
is given by

X(t) = M(t)M(to) ' Ko + /t M(t)M(s)~" £(s)ds.

Solution Formula Using Matrix Exponential: The general solutions of the nonhomogeneous
system dX/dt = AX + f(t) are

t
X(t) =€ | - +/ eI f(s5)ds,

where C,- -, C, are arbitrary constants.
The solution of the initial value problem

dx



is given by
t
R(t) = el A%, + / e =) f(s)ds.
to

Solution Method by Decoupling: If A is diagonalizable (i.e., A = PDP~! with an invertible

P and a diagonal D), then the system can be decoupled by setting X(t) = Pu(t). The system
for u(t) becomes

du -
— = Diu+ P ().
o d + (t)

EXAMPLE. Solve the initial value probelm
dX | 6/7 —15/14 e oo | 4
dt {—5/7 37/14 | XF et | X0) =41
Solution 1 (Use a fundamental matrix): First find eigenvalues and eigenvectors of A.

The eigenvalues of A are A\; = 1/2, \y = 3.

Vector v; = E’ is an eigenvector associated with A\; = 1/2.

Vector vy = [ 9 } is an eigenvector associated with Ay = 3.
Thus,

36t/2 L
M(t) = [eAltV1 6)\2tV2] = |i et/2 2€3t :|

is a fundamental matrix for the homogeneous system X'(t) = AX(t).
The solution to the initial value problem is given by

Z(t) = M(t)M /M 1 §(s)ds
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Solution 2 (Use decoupling): The geiven coefficient matrix A is diagonalizable: A =
PDP~! with )
3 -1 1/2 0
-l 2] e[
Set X(t) = Pu(t). The system for u(t) becomes

Z—? pia i - {162 g} - {_21//77 ém {:i} i(0) = P! { 4 ]

or, equivalently,

1 2 1
Ull = §U1 + ?e2t + ?e_t, Ul(O) = 1,
uhy = 3ug — Low + 3ot uy(0) = —1
2 7 7 '

These two equations can be solved separately (the method of integrating factor and the method
of undetermined coefficients both work in this case). The solutions are

4y 2 19 t/2
uy(t) = 216 216 +21e ,
1 3 29
£ = 2t _ 2t 27 3t
w(t) =767 —5g¢ T 5°

Finally, the solution to the original problem is given by

%(1) = Pii(t) = P {“1@)}

us(t)
4
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N A T T
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919 " Tt T

Solution 3 (Use matrix exponential): First find ¢4 using a fundamental matrix: ¢4 =

M(t)M(0)~t. Or, one can also find e by diagonalization:

6 0 1 4 3 42 3 g
oA — petD p—1 — {3 —1} {et/z (; } { 2/7 1/7} . 76 + 76 76 76
= = . =
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7 7 7 7

The solution to the initial value problem is given by

t
X(t) = 1%(0) +/ eI (5)ds
0
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EXERCISES

[1] Solve
S(le = 51’1 — 35(72 + 8,
Th = 11 + 19 + 321,
1’1(0) = 2,2[‘2(0) =0.
2] Solve
S(le = —71’1 — 95(72 + 95(73 + €_t,
Ty = 311 + 519 — 333 + 27" + €,
S(Zlg = —31’1 — 35(72 + 55(73 + 36t,
z1(0) = 1,22(0) = 0,23(0) = 0.
[3] Solve
ry = —bxy — 8wy + 4us,
SL’/Q = 21’1 + 31’2 - 25(73 + €_t,
ry = 6z + 14wy — Sa3 + 9¢,
1'1(0) = 2,1’2(0) = 1,1’3(0) =1.
Answers
[1] z1(t) = —10 — 12t + 3e* + 9¢e*,
2o(t) = —10 — 20t + e + 9e*
2] z1(t) = —9e' + 3 + Fe~t + 9te,
To(t) = 2e' + 2% — He™ — Bte ™,
x3(t) = —6e’ + 3e* + e~ + 3te™?
3] wi(t) = =5+ 4t + (4 +6t)e " + (3 — 18t)e™ ™,
(t)
(t)

z3(t) =2+t + (2 +2t)e ! + (=2 4 9t)e ™



