Some Applications of 2-D Systems of
Differential Equations

Xu-Yan Chen



Examples:
» Salt in Tanks (a linear system)
» Electric Circuits (a linear system)

» Population Model - Competing Species (a nonlinear system)



Linear Model of Population Dynamics Malthus (1798)
Diff equation for the population P(t) at time t¢:

P' =rP,
where constant r is the net per capita growth rate:

r = b — d = per capita birth rate — per capita death rate.

Solutions: P(t) = P(0)e"

When r > 0,

Solution Graphs P(t) vs ¢
3 -

Phase portrait

<>
0

Equilibrium P = 0 is unstable.

Positive solutions P(¢) grow exponentially to
© as f— .




Logistic Model of Population Dynamics Verhulst (1838)

P
P=rP(1-=
?(1-%)

where r is the net per capita growth rate when P ~ 0,
K is the carrying capacity.
KP(0)
P(0) + [K — P(0)]e"?

Solution Formula: P(t) =

Example. P’ =6P (1 — P/2)

Phase portrait

<o—> —<

Equilibrium P = 0 is unstable.

Equilibrium P = K is asymp stable.

All positive solutions P(¢) converge to K as
[— .




Logistic Dynamics of Two Species

) = x1(6 — 3x1)

If no interactions:
rh = x9(3 — 2x3)




Logistic Dynamics of Two Species

) =x1(6 — 3x1) limy oo 21 () = 2

If no interactions: —
o = r3(3 — 2x3) limy o0 x2(t) = 3/2

Phase portraits on axes
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Logistic Dynamics of Two Species

- - o i =x1(6 —3xq) limy o0 21(t) = 2
no interactions: o ia — B
L= x2(3 — 2x2) limy_, oo x2(t) = 3/2

Nonlinear Dynamics
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Logistic Dynamics of Two Species

o int o ) = x1(6 — 3x1) limy o0 21(t) = 2
no interactions: o ia — B
L= x2(3 — 2x2) limy_, oo x2(t) = 3/2

Nonlinear Dynamics




Example 3. Logistic Growth & Competition
Lotka (1925), Volterra (1926), Gause (1934), ------

With Competition:

{ rf =x1(6 —3x; —2x9 ) 2o reduces the growth of x4

ro =1x3(3 —2x9 —xy ) 21 reduces the growth of x5
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Example 3. Logistic Growth & Competition
Lotka (1925), Volterra (1926), Gause (1934), ------

With Competition:

{ rf =x1(6 —3x; —2x9 ) 2o reduces the growth of x4

ro =1x3(3 —2x9 —xy ) 21 reduces the growth of x5

Basic Questions:
» Find equilibria. (i.e., time independent solutions)

» Construct a linear approximating system near each equilibrium.
(use the Jacobian matrix, that is, partial derivatives)

» Study the linear approximating dynamics near the equilibrium.
(use eigenvalues & eigenvectors)

» Determine the nonlinear dynamics near the equilibrium.
(if eigenvalues are # 0 & are not purely imaginary, Yes We Can!)



Example 3. (Continued. Find equilibria.)

Competing Species:

x| =x1(6 — 31 — 213) fi(x1,22) = x1(6 — 321 — 229)
Ty = 12(3 — x1 — 2x2) fa(x1,22) = x2(3 — 1 — 213)



Example 3. (Continued

Competing Species:

) = x1(6 — 3r1 — 229)
ry = x2(3 — 11 — 222)

Equilibria:

$1(6 — 3%1 — 2[132) =0
562(3 — 1 — 25132) =0

. Find equilibria.)

f1 (:131, ZUQ) = 331(6 — 3£C1 — 2582)
f2($1,£€2) = 372(3 — X1 — 2:132)



Example 3. (Continued. Find equilibria.)

Competing Species:

x| =x1(6 — 31 — 213) fi(x1,22) = x1(6 — 321 — 229)
Ty = 12(3 — x1 — 2x2) fa(x1,22) = x2(3 — 1 — 213)
Equilibria:

—> Separate to four combinations

I1(6 — 3$1 — 2332) =0
562(3 — 1 — 2582) =0

.261:0 <(6—3x1—2x2—0
1 xg = () | T2 =
(:1:1:0 <(6—3$1_2x2:
j 3—x1 — 219 =0 L3—CU1—2$2—0



Example 3. (Continued. Find equilibria.)

Competing Species:

x| =x1(6 — 31 — 213) fi(x1,22) = x1(6 — 321 — 229)
Ty = 12(3 — x1 — 2x2) fa(x1,22) = x2(3 — 1 — 213)
Equilibria:

—> Separate to four combinations

I1(6 — 3%1 — 2332) =0
562(3 — 1 — 25132) =0

-

.281:0 <(6—3$1—2£L‘2—0
1 xg = () | T2 =
(.CU1:O <(6—3$1_2x2:
j 3—x1 — 219 =0 L3—CU1—2$2—0

Four equilibria:

(371,372) — (070)7 (270)7 (07%)7 (%7%)



Example 3. (continued. Linear Approximation)
Competing Species:

{ i =x1(6 — 31 — 2x3) fi(x1,z2) = x1(6 — 3x1 — 2x3)
o = T2(3 — x1 — 2x2) fo(x1,x2) = 22(3 — 1 — 2x9)



Example 3. (continued. Linear Approximation)
Competing Species:

{ i =x1(6 — 31 — 2x3) fi(x1,z2) = x1(6 — 3x1 — 2x3)
o = T2(3 — x1 — 2x2) fo(x1,x2) = 22(3 — 1 — 2x9)

Linear Approximating System near equilibrium (%, %):



Example 3. (continued. Linear Approximation)
Competing Species:

{ 33/1 — 561(6 — 3561 — 256‘2) f1 (561,332) — 5171(6 — 3.51?1 — 2332)
o = T2(3 — x1 — 2x2) fo(x1,22) = 22(3 — 1 — 222)

Linear Approximating System near equilibrium (%, %):

e Prepare the Jacobian matrix:

J = af1/8331 8f1/(95132 o 6 — 6331 — 2332 —2:131
o 8f2/6£l?1 6f2/8a;2 - — X9 3 — r1 — 45132



Example 3. (continued. Linear Approximation)
Competing Species:

{ 33/1 — 561(6 — 3561 — 256‘2) f1 (561,332) — 561(6 — 3.56‘1 — 2332)
o = T2(3 — x1 — 2x2) fo(x1,22) = 22(3 — 1 — 222)

Linear Approximating System near equilibrium (%, %):

e Prepare the Jacobian matrix:

J = af1/8331 8f1/(9£132 o 6 — 6331 — 2332 —2:131
o 8f2/6£l?1 6f2/0a;2 o — X9 3 — r1 — 45132



Example 3. (continued. Linear Approximation)
Competing Species:

{ 33/1 — 561(6 — 3561 — 256‘2) f1 (561,332) — 5171(6 — 3.51?1 — 2332)
o = T2(3 — x1 — 2x2) fo(x1,22) = 22(3 — 1 — 222)

Linear Approximating System near equilibrium (%, %):

e Prepare the Jacobian matrix:

J = af1/8331 8f1/(95132 o 6 — 6331 — 2332 —2:131
o 8f2/6£l?1 6f2/8a;2 - — X9 3 — r1 — 45132

e Evaluate J at equilibrium (z1,2z2) = (2, 2):
9

-3 -3

!

42

e The Linear Approximating System near equilibrium (%, %):

-5 S0
) -2 2] |z -3



Example 3. Linear dynamics near (0,0)

The Linear Approximating
System near equilibrium (0, 0):

Bl



Example 3. Linear dynamics near (0,0)

The Linear Approximating
System near equilibrium (0, 0):

Bl

Eigenvalues & Eigenvectors:

S 1]
)\1 — 6, W1 = _O_
S 0]
)\2 = 3, Wo = _1_



Example 3. Linear dynamics near (0,0)

The Linear

A

>

'
5

1

|

6

wW

I

_’_
, W1 =

s

2

|

1
0

0
1

T
x2

|
|

Approximating
System near equilibrium (0, 0):

6 0
0 3

Eigenvalues & Eigenvectors:

|

Linear Approx Dynamics Near (0,0)

Equilibrium (0, 0) is
a nodal source.



Example 3. Linear dynamics near (2,0)

The Linear Approximating
System near equilibrium (2,0):

HEIr



Example 3. Linear dynamics near (2,0)

The Linear Approximating
System near equilibrium (2,0):

HEIr

Eigenvalues & Eigenvectors:

ﬂ 1]

)\1 — —6, W1 = [O_
— _4_

)\2 = 1, Wo = [ e |



Example 3. Linear dynamics near (2,0)

The Linear Approximating 4

System near equilibrium (2,0):

HEIr

Eigenvalues & Eigenvectors:

a 1]

)\1 — —6, W1 = [O_
— _4_

)\2 = 1, Wo = [ e |

////a/xﬂ/

_’/’_/’%

Linear Approx Dynamics Near (2,0)

.

——
—>—
——

Equilibrium (2,0) is a saddle



Example 3. Linear dynamics near (0, %)

The Linear Approximating

System near equilibrium (0, %)

MR | N



Example 3. Linear dynamics near (0,

The Linear Approximating

System near equilibrium (0, %)

MR | N

Eigenvalues & Eigenvectors:

M =3 W= [_14
,
1_

)\2:—3, W/’QZI

S
2

)



Example 3. Linear dynamics near (0, %)

Linear Approx Dynamics Near (0,3/2)

The Linear Approximating \_J///
System near equilibrium (0, 2): )

2

MR | N

Eigenvalues & Eigenvectors:

N
M =3, W= [_14: g
Ao = =3, Wy = [‘f

Equilibrium (0, 2) is a saddle




Example 3. Linear dynamics near (

The Linear Approximating System
near equilibrium (%, %)

[xﬁ] _ [3 —3] [xl — gl
& _% _% 372—%

DO
W~ [ Qo



Example 3. Linear dynamics near (

The Linear Approximating System

near equilibrium (3, 3):

IR |
) 13 -3l

Eigenvalues & Eigenvectors:

A= -3+ 2v2~ —0.88

-l

) [PV

W~ [ Qo



Example 3. Linear dynamics near (

\GJ[OV)
=~
~—

The Linear Approximating System

near equilibrium (% s %) : Linear Approx Dynamics Near (3/2, 3/4)

-0 8]
xh -3 3| lz,-3

L

Eigenvalues & Eigenvectors: :7:",‘
=)
A =-3+3V2~-088 /,
- 9 - //
Wy = ——
—1-V2
Ay =-3-3v2~ 512
[ 2 ] R 3 3\ -
To — Equilibrium (2, 2) is
Wo = 274
-1+ \@ a nodal sink.




Linear Approx Dynamlcs Near (0,3/2) Linear Approx Dynamics Near (3/2,3/4)

i,

Local Phase Portraits
Of Nonlinear System
near equilibria

Linear Approx Dynamics Near (0,0) Linear Approx Dynamlcs Near (2,0)




dx1

e x1(6 — 3x1 — 2x5)
dx

d—: =x,(3 —x1 — 2x5)

Nullclines

4—_3{2

[
1




= x1(6 - 3x1 — sz)

dxq
dt
dx,
ar =x,(3 —x1 — 2x5)

Direction Fields on the Nullclines




Example 3. Global phase portrait

Nonlinear Dynamics

—

o



Example 3. Discussion

Nonlinear Dynamics

N




Example 3. Discussion

» The survival-extinction states

(2, 0) and (O, %) are unstable. Nonlinear Dynamics

N

=




Example 3. Discussion

» The survival-extinction states

(2,0) and (0, 2) are unstable.

(] [GV

> The co-existence state (3, 2) is

asymptotically stable.

Nonlinear Dynamics

N
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Example 3. Discussion

» The survival-extinction states

(2,0) and (0, 2) are unstable. Nonlinear Dynamics
. 3 3 . V
» The co-existence state (5, %) is
asymptotically stable. 2.

» All positive solutions converge to )

the co-existence state (2, 2). 1-

A

\\‘\\W

=




Example 3. Discussion

The survival-extinction states
(2,0) and (0, 2) are unstable.

)
. 3 3\ . Y
The co-existence state (3, ) is
asymptotically stable. 2.
All positive solutions converge to )
the co-existence state (2, 2). 1-

A change of the initial
populations does not affect the 0
eventual convergence to the

co-existence state (2, 2).

Nonlinear Dynamics

\\‘\\W
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Example 3. Discussion

The survival-extinction states

(2,0) and (0, 2) are unstable. Nonlinear Dynamics
. 3 3\ . Y

The co-existence state (3, ) is

asymptotically stable. 2.

All positive solutions converge to )

the co-existence state (2, 2). 1-

\\‘\\)

A change of the initial

populations does not affect the 0 >3 <
eventual convergence to the 1

co-existence state (2, 2).

=

Question: Why is the co-existence stable in this system?



Example 3. Discussion

The survival-extinction states

(2,0) and (0, 2) are unstable. Nonlinear Dynamics
. 3 3\ . Y

The co-existence state (3, ) is

asymptotically stable. 2.

All positive solutions converge to )

the co-existence state (2, 2). 1-

\\‘\\)

A change of the initial

populations does not affect the 0 >3 <
eventual convergence to the 1

co-existence state (2, 2).

=

Question: Why is the co-existence stable in this system?

Answer: Weak competition.



Example 3. (continued. Weak competition)

Ty =11
r_

( § —le

—2£B2 )
—2%2 )

Nonlinear Dynamics

;




Example 3. (continued. Weak competition)

Nonlinear Dynamics

vy =x1(6 =31 —2x9 )
/

Loy = $2( 3 —I —2x2 )

The competition terms
—2x9 and —xq 2

3




Example 3. (continued. Weak competition)

Nonlinear Dynamics

vy =x1(6 =31 —2x39 )
/

Loy = xg( 3 —I —2$2 )

The competition terms
—2x9 and —xq 2

%

the resource inhibition terms

—3x7 and —2x- 0 1 > 2 <




Example 3. (continued. Weak competition)

Nonlinear Dynamics
{ vy =x1(6 =31 —2x39 )

rh =x9(3 —x1 —219 )

The competition terms
—2x9 and —xq 2

ane “weabon” Han

the resource inhibition terms

%

—3x7 and —2x- 0 1 > 2 <




Example 3. (continued. Weak competition)

Nonlinear Dynamics
{ vy =x1(6 =31 —2x39 )

rh =x9(3 —x1 —219 )

The competition terms
—2x9 and —xq 2

ane “weabon” Han

the resource inhibition terms

%

—3x7 and —2x- 0 1 > 2 <

3

det [ | 3 ] >0 = Weak competition = Stable co-existence



Example 4. Strong Competition Model.

Competing Species:

{ i =213 —x1 —2x;5 ) xo reduces the growth of z;

rh =x9(2 —x —x2) x1 reduces the growth of x5



Example 4. Strong Competition Model.

Competing Species:

i =213 —x1 —2x;5 ) xo reduces the growth of x
rh =x9(2 —x —x2) x1 reduces the growth of x5
Equilibria:

o — 975 = L
{ r1(3 — 23 z2) =0 —> Separate to four combinations

5132(2—331 —.272) =0

e %

) 581:0 ) 3—561—2262:()
\332:0 LZEQZO

<’ 1 =0 <”3—x1—2x2:o
\2—%1—332:0 LQ—QZ‘l—LL’Q:O

Four equilibria: (z1,z2) = (0,0), (3,0), (0,2), (1,1).



Example 4. Linear dynamics near (0,0)

The Linear Approximating
System near equilibrium (0, 0):

2= o 2| o)



Example 4. Linear dynamics near (0,0)

The Linear Approximating
System near equilibrium (0, 0):

2= o 2| o)

Eigenvalues & Eigenvectors:

A =3, Wy — (1)
. 0]
)\2 — 2, Wo — _1_



Example 4. Linear dynamics near (0,0)

Linear Approx Dynamics Near (0,0)

The Linear Approximating

System near equilibrium (0, 0): 3 7
xll _ 3 O X 2\ 2 | /” /"/
ah| |0 2| |xo ‘ \
Eigenvalues & Eigenvectors: \ 7
8 8 \1 e —
~ 1 . st
M =3, W= [O] AR .

>
[\v]

Il
\.[\')
s

2= |4 .
Equilibrium (0, 0) is
a nodal source.



Example 4. Linear dynamics near (3,0)

The Linear Approximating
System near equilibrium (3, 0):

Bl piily



Example 4. Linear dynamics near (3,0)

The Linear Approximating
System near equilibrium (3, 0):

zi| |3 —6| |x1—3
Th 0 -1 T
Eigenvalues & Eigenvectors:

AN = 3, W= H

Ao = —1, Wo= [_13]



Example 4. Linear dynamics near (3,0)

Linear Approx Dynamics Near (3,0)

The Linear Approximating = /
e ea pproximating % /

System near equilibrium (3, 0):

| |-3 —6] [z1—3
x| |0 -1 T2
Eigenvalues & Eigenvectors:

A= -3, Wy = H

Equilibrium (3,0) is
a nodal sink



Example 4. Linear dynamics near (0,2)

The Linear Approximating
System near equilibrium (0, 2):

EiREt |t



Example 4. Linear dynamics near (0,2)

The Linear Approximating
System near equilibrium (0, 2):

EiREt |t

Eigenvalues & Eigenvectors:

At =—2, Wi = [(1)]

Ao = —1, Wy = [_21]



Example 4. Linear dynamics near (0, 2)

Linear Approx Dynamics Near (0,2)

The Linear Approximating
System near equilibrium (0, 2): \

I P

Eigenvalues & Eigenvectors: f A

Equilibrium (0, 2) is
a nodal sink

=3




Example 4. Linear dynamics near (1,1)

The Linear Approximating System
near equilibrium (1, 1):

A i



Example 4. Linear dynamics near (1,1)

The Linear Approximating System
near equilibrium (1, 1):

i |1 =2| |z —1
rh|  |—-1 —1| |zo—1
Eigenvalues & Eigenvectors:

M=-1+vV2>0

Ao =—-1-12<0
=Y

W2 =1



Example 4. Linear dynamics near (1,1)

The Linear Approximating System

near equilibrium (1, 1):

] [-1 =2] [z —1
2| T =1 =1 |za—1

Eigenvalues & Eigenvectors:

M=-1+vV2>0

Ao =—-1-12<0
=Y

W2 =1

Linear Approx Dynamics Near (1,1)

7

e

A
/

SN

Equilibrium (1, 1) is a saddle



Linear Approx Dynamics Near (0,2)

‘I \\\_._._y

Linear Approx Dynamics Near (0,0)

‘ 7 ; ./"’/

Linear Approx Dynamics Near (1,1)

Local Phase Portraits
Of Nonlinear System
near equilibria

Linear Approx Dynamics Near (3,0)




[2
1

= x3(2 —x1 — x3)
Nullclines
X )
] = (
fl )




dx1
dt x1(3 = x1 — 2x3)

dxz
%: X2(2 — X1 — X3)

Direction Fields on the Nullclines




Example 4. Global phase portrait

Nonlinear Dynamics



Example 4. Discussion

Nonlinear Dynamics

P




Example 4. Discussion

» The survival-extinction states
(3,0) and (0,2) are both

Nonlinear Dynamics

asymptotically stable. v
34
X, 2 -
N
1 /




Example 4. Discussion

» The survival-extinction states
(3,0) and (0,2) are both

Nonlinear Dynamics

asymptotically stable. v
» The co-existence state (1,1) is .
unstable.
X, 2 -
A
1 /




Example 4. Discussion

» The survival-extinction states
(3,0) and (0,2) are both

Nonlinear Dynamics

asymptotically stable. v
» The co-existence state (1,1) is .
unstable.
X, 2
» Almost all positive solutions A
converge to either (3,0) or (0,2). 1 /




Example 4. Discussion

» The survival-extinction states
(3,0) and (0,2) are both

Nonlinear Dynamics

asymptotically stable. v
» The co-existence state (1,1) is .
unstable.
X, 2
» Almost all positive solutions A
converge to either (3,0) or (0,2). 1 /

» A small difference in the initial .
conditions may make a huge
difference in a species’ destiny.




Example 4. (continued. Strong competition)

A small difference in the initial conditions may make a huge difference
in a species’ destiny.

Initial data:
As t — o0, (x1,22) — (3,0).

Solution Graphs X, (¢) and xz(t) Vs ¢




Example 4. (continued. Strong competition)

A small difference in the initial conditions may make a huge difference
in a species’ destiny.

Initial data: Initial data:
As t — o0, (x1,22) — (3,0). Ast — o0, (z1,22) — (0, 2).
Solution Graphs X, (¢) and xz(t) Vs ¢ Solution Graphs xl(t) and xz(t) Vs ¢
4 4




Example 4. (continued. Strong competition)

Question: Why is the co-existence unstable in this system?

Nonlinear Dynamics

r




Example 4. (continued. Strong competition)
Question: Why is the co-existence unstable in this system?

Answer: Strong competition.

Nonlinear Dynamics




Example 4. (continued. Strong competition)
Question: Why is the co-existence unstable in this system?

Answer: Strong competition.

Nonlinear Dynamics

{ i =x1(3 —x1 —2x5 ) Y

T =x9(2 —x1 —xIg ) 3
A
"Wz




Example 4. (continued. Strong competition)
Question: Why is the co-existence unstable in this system?

Answer: Strong competition.

Nonlinear Dynamics

i =x1(3 —x1 —2x5 ) \/
rh=x9(2 —x1 —x9 ) 3
The competition terms
X, 2
—2x9 and —x; 2




Example 4. (continued. Strong competition)
Question: Why is the co-existence unstable in this system?

Answer: Strong competition.

Nonlinear Dynamics

i =x1(3 —x1 —2x5 ) \
rh=x9(2 —x1 —x9 ) 3
The competition terms
—2x9 and —x; * 29
N
1 -
/’
the resource inhibition terms /
—x7 and —x9 5 7 > 3 I <




Example 4. (continued. Strong competition)

Question: Why is the co-existence unstable in this system?

Answer: Strong competition.

Nonlinear Dynamics

{ i =x1(3 —x1 —2x5 ) Y

rh=x9(2 —x1 —x9 ) 3

The competition terms
—2x9 and —x; 2

N
ARE STRONGER THAN 1]
s
the resource inhibition terms ‘ /A

—x7 and —x9 5 7 > 3 I <




Example 4. (continued. Strong competition)
Question: Why is the co-existence unstable in this system?

Answer: Strong competition.

Nonlinear Dynamics

i =x1(3 —x1 —2x5 ) \/
rh=x9(2 —x1 —x9 ) 3
The competition terms
—2x9 and —x; * 29
A\ 7 A
ARE STRoONGER THAN 1.
/’
the resource inhibition terms /
—x7 and —x9 5 7 > 3 I <

*1

1| B
1 1

One species survives,
the other extincts.

det [ ] < 0 = Strong competition = {





