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Examples:

I Salt in Tanks (a linear system)

I Electric Circuits (a linear system)

I Population Model - Competing Species (a nonlinear system)



Linear Model of Population Dynamics Malthus (1798)
Diff equation for the population P (t) at time t:

P ′ = rP,

where constant r is the net per capita growth rate:

r = b− d = per capita birth rate− per capita death rate.

Solutions: P (t) = P (0)ert

When r > 0,



Logistic Model of Population Dynamics Verhulst (1838)

P ′ = rP

(
1− P

K

)
where r is the net per capita growth rate when P ≈ 0,

K is the carrying capacity.

Solution Formula: P (t) =
KP (0)

P (0) + [K − P (0)]e−rt

Example. P ′ = 6P (1− P/2) (r = 6, K = 2)



Logistic Dynamics of Two Species

If no interactions:

{
x′1 = x1(6− 3x1)

x′2 = x2(3− 2x2)

=⇒
limt→∞ x1(t) = 2

limt→∞ x2(t) = 3/2
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Example 3. Logistic Growth & Competition
Lotka (1925), Volterra (1926), Gause (1934), · · · · · ·

With Competition:{
x′1 = x1(6− 3x1 −2x2 )

x′2 = x2(3− 2x2 −x1 )

x2 reduces the growth of x1

x1 reduces the growth of x2

Basic Questions:

I Find equilibria. (i.e., time independent solutions)

I Construct a linear approximating system near each equilibrium.
(use the Jacobian matrix, that is, partial derivatives)

I Study the linear approximating dynamics near the equilibrium.
(use eigenvalues & eigenvectors)

I Determine the nonlinear dynamics near the equilibrium.
(if eigenvalues are 6= 0 & are not purely imaginary, Yes We Can!)
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Example 3. (Continued. Find equilibria.)

Competing Species:{
x′1 = x1(6− 3x1 − 2x2)
x′2 = x2(3− x1 − 2x2)

∣∣∣∣ f1(x1, x2) = x1(6− 3x1 − 2x2)
f2(x1, x2) = x2(3− x1 − 2x2)

Equilibria:{
x1(6− 3x1 − 2x2) = 0
x2(3− x1 − 2x2) = 0

=⇒ Separate to four combinations

{
x1 = 0
x2 = 0

{
6− 3x1 − 2x2 = 0
x2 = 0{

x1 = 0
3− x1 − 2x2 = 0

{
6− 3x1 − 2x2 = 0
3− x1 − 2x2 = 0

Four equilibria:

(x1, x2) = (0, 0), (2, 0), (0, 32 ), ( 32 ,
3
4 ).
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Example 3. (continued. Linear Approximation)
Competing Species:{

x′1 = x1(6− 3x1 − 2x2)

x′2 = x2(3− x1 − 2x2)

∣∣∣∣ f1(x1, x2) = x1(6− 3x1 − 2x2)

f2(x1, x2) = x2(3− x1 − 2x2)

Linear Approximating System near equilibrium ( 32 ,
3
4 ):

• Prepare the Jacobian matrix:

J =

[
∂f1/∂x1 ∂f1/∂x2
∂f2/∂x1 ∂f2/∂x2

]
=

[
6− 6x1 − 2x2 −2x1

−x2 3− x1 − 4x2

]
• Evaluate J at equilibrium (x1, x2) = (32 ,

3
4 ):

J =

[
− 9

2 −3
− 3

4 − 3
2

]
• The Linear Approximating System near equilibrium ( 32 ,

3
4 ):[

x′1
x′2

]
=

[
− 9

2 −3
− 3

4 − 3
2

] [
x1 − 3

2

x2 − 3
4

]
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Example 3. Linear dynamics near (0, 0)

The Linear Approximating
System near equilibrium (0, 0):[

x′1
x′2

]
=

[
6 0
0 3

] [
x1
x2

]

Eigenvalues & Eigenvectors:

λ1 = 6, ~w1 =

[
1
0

]

λ2 = 3, ~w2 =

[
0
1

]
Equilibrium (0, 0) is

a repulsive improper node.
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Example 3. Linear dynamics near (0, 0)

The Linear Approximating
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Example 3. Linear dynamics near (2, 0)

The Linear Approximating
System near equilibrium (2, 0):[
x′1
x′2

]
=

[
−6 −4
0 1

] [
x1 − 2
x2

]

Eigenvalues & Eigenvectors:

λ1 = −6, ~w1 =

[
1
0

]

λ2 = 1, ~w2 =

[
−4
7

]

Equilibrium (2, 0) is a saddle
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Example 3. Linear dynamics near (32 ,
3
4)

The Linear Approximating System
near equilibrium ( 32 ,

3
4 ):[

x′1
x′2

]
=

[
− 9

2 −3
− 3

4 − 3
2

] [
x1 − 3

2

x2 − 3
4

]

Eigenvalues & Eigenvectors:

λ1 = −3 + 3
2

√
2 ≈ −0.88

~w1 =

[
2

−1−
√
2

]
λ2 = −3− 3

2

√
2 ≈ −5.12

~w2 =

[
2

−1 +
√
2

]
Equilibrium ( 32 ,

3
4 ) is

an attractive improper node.
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Local Phase Portraits 
Of Nonlinear System 
near equilibria 

Linear Approx Dynamics Near (0,3/2) 

Linear Approx Dynamics Near (0,0) 

Linear Approx Dynamics Near (3/2,3/4) 

Linear Approx Dynamics Near (2,0) 



  
𝑑𝑥1

𝑑𝑡
= 𝑥1(6 − 3𝑥1 − 2𝑥2) 

 

𝑑𝑥2

𝑑𝑡
= 𝑥2(3 − 𝑥1 − 2𝑥2) 

Nullclines 



Direction Fields on the Nullclines 

  
𝑑𝑥1

𝑑𝑡
= 𝑥1(6 − 3𝑥1 − 2𝑥2) 

 

𝑑𝑥2

𝑑𝑡
= 𝑥2(3 − 𝑥1 − 2𝑥2) 



Example 3. Global phase portrait



Example 3. Discussion

I The survival-extinction states
(2, 0) and (0, 32 ) are unstable.

I The co-existence state ( 32 ,
3
4 ) is

asymptotically stable.

I All positive solutions converge to
the co-existence state ( 32 ,

3
4 ).

I A change of the initial
populations does not affect the
eventual convergence to the
co-existence state ( 32 ,

3
4 ).

Question: Why is the co-existence stable in this system?

Answer: Weak competition.
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Example 3. (continued. Weak competition)

{
x′1 = x1( 6 −3x1 −2x2 )

x′2 = x2( 3 −x1 −2x2 )

The competition terms
−2x2 and −x1

�a�r�e `̀ �w�e�a�k�e�r�'' �t�h�a�n�

the resource inhibition terms
−3x1 and −2x2

det

[
3 2

1 2

]
> 0 ⇒Weak competition ⇒ Stable co-existence
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Example 4. Strong Competition Model.

Competing Species:{
x′1 = x1(3 − x1 −2x2 )

x′2 = x2(2 −x1 − x2 )

x2 reduces the growth of x1

x1 reduces the growth of x2

Equilibria:{
x1(3− x1 − 2x2) = 0
x2(2− x1 − x2) = 0

=⇒ Separate to four combinations

{
x1 = 0
x2 = 0

{
3− x1 − 2x2 = 0
x2 = 0{

x1 = 0
2− x1 − x2 = 0

{
3− x1 − 2x2 = 0
2− x1 − x2 = 0

Four equilibria: (x1, x2) = (0, 0), (3, 0), (0, 2), (1, 1).
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Example 4. Linear dynamics near (0, 0)

The Linear Approximating
System near equilibrium (0, 0):[

x′1
x′2

]
=

[
3 0
0 2

] [
x1
x2

]

Eigenvalues & Eigenvectors:

λ1 = 3, ~w1 =

[
1
0

]

λ2 = 2, ~w2 =

[
0
1

]
Equilibrium (0, 0) is

a repulsive improper node.
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Example 4. Linear dynamics near (1, 1)
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Local Phase Portraits 
Of Nonlinear System 
near equilibria 

Linear Approx Dynamics Near (0,2) 

Linear Approx Dynamics Near (0,0) 

Linear Approx Dynamics Near (1,1) 

Linear Approx Dynamics Near (3,0) 



   
𝑑𝑥1

𝑑𝑡
= 𝑥1(3 − 𝑥1 − 2𝑥2) 

 

𝑑𝑥2

𝑑𝑡
= 𝑥2(2 − 𝑥1 − 𝑥2) 

Nullclines 



Direction Fields on the Nullclines 

   
𝑑𝑥1

𝑑𝑡
= 𝑥1(3 − 𝑥1 − 2𝑥2) 

 

𝑑𝑥2

𝑑𝑡
= 𝑥2(2 − 𝑥1 − 𝑥2) 



Example 4. Global phase portrait



Example 4. Discussion

I The survival-extinction states
(3, 0) and (0, 2) are both
asymptotically stable.

I The co-existence state (1, 1) is
unstable.

I Almost all positive solutions
converge to either (3, 0) or (0, 2).

I A small difference in the initial
conditions may make a huge
difference in a species’ destiny.
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Example 4. (continued. Strong competition)

A small difference in the initial conditions may make a huge difference
in a species’ destiny.

Initial data:
x1(0) = 2.01, x2(0) = 1.64.
As t→∞, (x1, x2)→ (3, 0).

Initial data:
x1(0) = 2.01, x2(0) = 1.65.
As t→∞, (x1, x2)→ (0, 2).
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Example 4. (continued. Strong competition)
Question: Why is the co-existence unstable in this system?

Answer: Strong competition.

det

[
1 2

1 1

]
< 0 ⇒ Strong competition ⇒

{
One species survives,
the other extincts.
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