Some Applications of 2-D Systems of
Differential Equations

Xu-Yan Chen



Examples:
» Salt in Tanks (a linear system)
» Electric Circuits (a linear system)

» Population Model - Competing Species (a nonlinear system)



Linear Model of Population Dynamics Malthus (1798)
Diff equation for the population P(t) at time t¢:

P' =rP,
where constant r is the net per capita growth rate:

r = b — d = per capita birth rate — per capita death rate.

Solutions: P(t) = P(0)e"

When r > 0,

Solution Graphs P(t) vs ¢
3 -

Phase portrait

<>
0

Equilibrium P = 0 is unstable.

Positive solutions P(¢) grow exponentially to
© as f— .




Logistic Model of Population Dynamics Verhulst (1838)

P
P=rP(1-=
?(1-%)

where r is the net per capita growth rate when P ~ 0,
K is the carrying capacity.
KP(0)
P(0) + [K — P(0)]e"?

Solution Formula: P(t) =

Example. P’ =6P (1 — P/2)

Phase portrait

<o—> —<

Equilibrium P = 0 is unstable.

Equilibrium P = K is asymp stable.

All positive solutions P(¢) converge to K as
[— .




Logistic Dynamics of Two Species

) = x1(6 — 3x1)

If no interactions:
rh = x9(3 — 2x3)




Logistic Dynamics of Two Species

) =x1(6 — 3x1) limy oo 21 () = 2

If no interactions: —
o = r3(3 — 2x3) limy o0 x2(t) = 3/2

Phase portraits on axes
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Logistic Dynamics of Two Species

- - o i =x1(6 —3xq) limy o0 21(t) = 2
no interactions: o ia — B
L= x2(3 — 2x2) limy_, oo x2(t) = 3/2

Nonlinear Dynamics
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Logistic Dynamics of Two Species

o int o ) = x1(6 — 3x1) limy o0 21(t) = 2
no interactions: o ia — B
L= x2(3 — 2x2) limy_, oo x2(t) = 3/2

Nonlinear Dynamics




Example 3. Logistic Growth & Competition
Lotka (1925), Volterra (1926), Gause (1934), ------

With Competition:

{ rf =x1(6 —3x; —2x9 ) 2o reduces the growth of x4

ro =1x3(3 —2x9 —xy ) 21 reduces the growth of x5
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Example 3. Logistic Growth & Competition
Lotka (1925), Volterra (1926), Gause (1934), ------

With Competition:

{ rf =x1(6 —3x; —2x9 ) 2o reduces the growth of x4

ro =1x3(3 —2x9 —xy ) 21 reduces the growth of x5

Basic Questions:
» Find equilibria. (i.e., time independent solutions)

» Construct a linear approximating system near each equilibrium.
(use the Jacobian matrix, that is, partial derivatives)

» Study the linear approximating dynamics near the equilibrium.
(use eigenvalues & eigenvectors)

» Determine the nonlinear dynamics near the equilibrium.
(if eigenvalues are # 0 & are not purely imaginary, Yes We Can!)



Example 3. (Continued. Find equilibria.)

Competing Species:

x| =x1(6 — 31 — 213) fi(x1,22) = x1(6 — 321 — 229)
Ty = 12(3 — x1 — 2x2) fa(x1,22) = x2(3 — 1 — 213)



Example 3. (Continued

Competing Species:

) = x1(6 — 3r1 — 229)
ry = x2(3 — 11 — 222)

Equilibria:

$1(6 — 3%1 — 2[132) =0
562(3 — 1 — 25132) =0

. Find equilibria.)

f1 (:131, ZUQ) = 331(6 — 3£C1 — 2582)
f2($1,£€2) = 372(3 — X1 — 2:132)



Example 3. (Continued. Find equilibria.)

Competing Species:

x| =x1(6 — 31 — 213) fi(x1,22) = x1(6 — 321 — 229)
Ty = 12(3 — x1 — 2x2) fa(x1,22) = x2(3 — 1 — 213)
Equilibria:

—> Separate to four combinations

I1(6 — 3$1 — 2332) =0
562(3 — 1 — 2582) =0

.261:0 <(6—3x1—2x2—0
1 xg = () | T2 =
(:1:1:0 <(6—3$1_2x2:
j 3—x1 — 219 =0 L3—CU1—2$2—0



Example 3. (Continued. Find equilibria.)

Competing Species:

x| =x1(6 — 31 — 213) fi(x1,22) = x1(6 — 321 — 229)
Ty = 12(3 — x1 — 2x2) fa(x1,22) = x2(3 — 1 — 213)
Equilibria:

—> Separate to four combinations

I1(6 — 3%1 — 2332) =0
562(3 — 1 — 25132) =0

-

.281:0 <(6—3$1—2£L‘2—0
1 xg = () | T2 =
(.CU1:O <(6—3$1_2x2:
j 3—x1 — 219 =0 L3—CU1—2$2—0

Four equilibria:

(371,372) — (070)7 (270)7 (07%)7 (%7%)



Example 3. (continued. Linear Approximation)
Competing Species:

{ i =x1(6 — 31 — 2x3) fi(x1,z2) = x1(6 — 3x1 — 2x3)
o = T2(3 — x1 — 2x2) fo(x1,x2) = 22(3 — 1 — 2x9)



Example 3. (continued. Linear Approximation)
Competing Species:

{ i =x1(6 — 31 — 2x3) fi(x1,z2) = x1(6 — 3x1 — 2x3)
o = T2(3 — x1 — 2x2) fo(x1,x2) = 22(3 — 1 — 2x9)

Linear Approximating System near equilibrium (%, %):



Example 3. (continued. Linear Approximation)
Competing Species:

{ 33/1 — 561(6 — 3561 — 256‘2) f1 (561,332) — 5171(6 — 3.51?1 — 2332)
o = T2(3 — x1 — 2x2) fo(x1,22) = 22(3 — 1 — 222)

Linear Approximating System near equilibrium (%, %):

e Prepare the Jacobian matrix:

J = af1/8331 8f1/(95132 o 6 — 6331 — 2332 —2:131
o 8f2/6£l?1 6f2/8a;2 - — X9 3 — r1 — 45132



Example 3. (continued. Linear Approximation)
Competing Species:

{ 33/1 — 561(6 — 3561 — 256‘2) f1 (561,332) — 561(6 — 3.56‘1 — 2332)
o = T2(3 — x1 — 2x2) fo(x1,22) = 22(3 — 1 — 222)

Linear Approximating System near equilibrium (%, %):

e Prepare the Jacobian matrix:

J = af1/8331 8f1/(9£132 o 6 — 6331 — 2332 —2:131
o 8f2/6£l?1 6f2/0a;2 o — X9 3 — r1 — 45132



Example 3. (continued. Linear Approximation)
Competing Species:

{ 33/1 — 561(6 — 3561 — 256‘2) f1 (561,332) — 5171(6 — 3.51?1 — 2332)
o = T2(3 — x1 — 2x2) fo(x1,22) = 22(3 — 1 — 222)

Linear Approximating System near equilibrium (%, %):

e Prepare the Jacobian matrix:

J = af1/8331 8f1/(95132 o 6 — 6331 — 2332 —2:131
o 8f2/6£l?1 6f2/8a;2 - — X9 3 — r1 — 45132

e Evaluate J at equilibrium (z1,2z2) = (2, 2):
9

-3 -3

!

42

e The Linear Approximating System near equilibrium (%, %):

-5 S0
) -2 2] |z -3



Example 3. Linear dynamics near (0,0)

The Linear Approximating
System near equilibrium (0, 0):

Bl



Example 3. Linear dynamics near (0,0)

The Linear Approximating
System near equilibrium (0, 0):

Bl

Eigenvalues & Eigenvectors:

S 1]
)\1 — 6, W1 = _O_
S 0]
)\2 = 3, Wo = _1_



Example 3. Linear dynamics near (0,0)

Linear Approx Dynamics Near (0,0)

The Linear Approximating
System near equilibrium (0, 0):

-k e N2

Eigenvalues & Eigenvectors:

37/2 0 3| |x2 \“" /

M =6, W= )
1_’W1__()_

_,__O_
Ao = 3, 2—_1_

Equilibrium (0, 0) is
a nodal source.



Example 3. Linear dynamics near (2,0)

The Linear Approximating
System near equilibrium (2,0):

HEIr



Example 3. Linear dynamics near (2,0)

The Linear Approximating
System near equilibrium (2,0):

HEIr

Eigenvalues & Eigenvectors:

ﬂ 1]

)\1 — —6, W1 = [O_
— _4_

)\2 = 1, Wo = [ e |



Example 3. Linear dynamics near (2,0)

The Linear Approximating 4

System near equilibrium (2,0):

HEIr

Eigenvalues & Eigenvectors:

a 1]

)\1 — —6, W1 = [O_
— _4_

)\2 = 1, Wo = [ e |

////a/xﬂ/

_’/’_/’%

Linear Approx Dynamics Near (2,0)

.

——
—>—
——

Equilibrium (2,0) is a saddle



Example 3. Linear dynamics near (0, %)

The Linear Approximating

System near equilibrium (0, %)

MR | N



Example 3. Linear dynamics near (0,

The Linear Approximating

System near equilibrium (0, %)

MR | N

Eigenvalues & Eigenvectors:

M =3 W= [_14
,
1_

)\2:—3, W/’QZI

S
2

)



Example 3. Linear dynamics near (0, %)

Linear Approx Dynamics Near (0,3/2)

The Linear Approximating \_J///
System near equilibrium (0, 2): )

2

MR | N

Eigenvalues & Eigenvectors:

N
M =3, W= [_14: g
Ao = =3, Wy = [‘f

Equilibrium (0, 2) is a saddle




Example 3. Linear dynamics near (

The Linear Approximating System
near equilibrium (%, %)

[xﬁ] _ [3 —3] [xl — gl
& _% _% 372—%

DO
W~ [ Qo



Example 3. Linear dynamics near (

The Linear Approximating System

near equilibrium (3, 3):

IR |
) 13 -3l

Eigenvalues & Eigenvectors:

A= -3+ 2v2~ —0.88

-l

) [PV

W~ [ Qo



Example 3. Linear dynamics near (

The Linear Approximating System

near equilibrium (2, 2):

RIS
513/2 —% —% Lo — %
Eigenvalues & Eigenvectors:

A =-3+3v2~ —0.88

L 2
il ER
Ay =—3—3v2~ —5.12

Wo = [—1—3@]

DO | Lo
H~ | QO
~—

Linear Ap<x Dynamics Near (3/2, 3/4)

—

Al

Equilibrium (£, 2) is

a nodal sink.



Linear Approx Dynamlcs Near (0,3/2) Linear Approx Dynamics Near (3/2,3/4)

Local Phase Portraits
Of Nonlinear System
near equilibria

Linear Approx Dynamics Near (0,0) Linear Approx Dynamics Near (2,0)

N
|

i




U
[

QU
& &R

- X1(6 - 3X1 - sz)

= x2(3 —x1 — 2x3)

Nullclines
4_

[-2
1

ns*

[+2 -



dxq
E - x1(6 - 3x1 - sz)
dx,

E —_ x2(3 - x1 - sz)

Direction Fields on the Nullclines

4 X,




Example 3. Global phase portrait

Nonlinear Dynamics

—

o



Example 3. Discussion

Nonlinear Dynamics

N




Example 3. Discussion

» The survival-extinction states

(2, 0) and (O, %) are unstable. Nonlinear Dynamics

N
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Example 3. Discussion

» The survival-extinction states

(2,0) and (0, 2) are unstable.

(] [GV

> The co-existence state (3, 2) is

asymptotically stable.

Nonlinear Dynamics

N

=




Example 3. Discussion

» The survival-extinction states

(2,0) and (0, 2) are unstable. Nonlinear Dynamics
. 3 3 . V
» The co-existence state (5, %) is
asymptotically stable. 2.

» All positive solutions converge to )

the co-existence state (2, 2). 1-

A

\\‘\\W

=




Example 3. Discussion

The survival-extinction states
(2,0) and (0, 2) are unstable.

)
. 3 3\ . Y
The co-existence state (3, ) is
asymptotically stable. 2.
All positive solutions converge to )
the co-existence state (2, 2). 1-

A change of the initial
populations does not affect the 0
eventual convergence to the

co-existence state (2, 2).

Nonlinear Dynamics

\\‘\\W
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Example 3. Discussion

The survival-extinction states

(2,0) and (0, 2) are unstable. Nonlinear Dynamics
. 3 3\ . Y

The co-existence state (3, ) is

asymptotically stable. 2.

All positive solutions converge to )

the co-existence state (2, 2). 1-

\\‘\\)

A change of the initial

populations does not affect the 0 >3 <
eventual convergence to the 1

co-existence state (2, 2).

=

Question: Why is the co-existence stable in this system?



Example 3. Discussion

The survival-extinction states

(2,0) and (0, 2) are unstable. Nonlinear Dynamics
. 3 3\ . Y

The co-existence state (3, ) is

asymptotically stable. 2.

All positive solutions converge to )

the co-existence state (2, 2). 1-

\\‘\\)

A change of the initial

populations does not affect the 0 >3 <
eventual convergence to the 1

co-existence state (2, 2).

=

Question: Why is the co-existence stable in this system?

Answer: Weak competition.



Example 3. (continued. Weak competition)

Ty =11
r_

( § —le

—2£B2 )
—2%2 )

Nonlinear Dynamics

;




Example 3. (continued. Weak competition)

Nonlinear Dynamics

vy =x1(6 =31 —2x9 )
/

Loy = $2( 3 —I —2x2 )

The competition terms
—2x9 and —xq 2

3




Example 3. (continued. Weak competition)

Nonlinear Dynamics

vy =x1(6 =31 —2x39 )
/

Loy = xg( 3 —I —2$2 )

The competition terms
—2x9 and —xq 2

%

the resource inhibition terms

—3x7 and —2x- 0 1 > 2 <




Example 3. (continued. Weak competition)

Nonlinear Dynamics
{ vy =x1(6 =31 —2x39 )

rh =x9(3 —x1 —219 )

The competition terms
—2x9 and —xq 2

ane “weabon” Han

the resource inhibition terms

%

—3x7 and —2x- 0 1 > 2 <




Example 3. (continued. Weak competition)

Nonlinear Dynamics
{ vy =x1(6 =31 —2x39 )

rh =x9(3 —x1 —219 )

The competition terms
—2x9 and —xq 2

ane “weabon” Han

the resource inhibition terms

%

—3x7 and —2x- 0 1 > 2 <

3

det [ | 3 ] >0 = Weak competition = Stable co-existence



Example 4. Strong Competition Model.

Competing Species:

{ i =213 —x1 —2x;5 ) xo reduces the growth of z;

rh =x9(2 —x —x2) x1 reduces the growth of x5



Example 4. Strong Competition Model.

Competing Species:

i =213 —x1 —2x;5 ) xo reduces the growth of x
rh =x9(2 —x —x2) x1 reduces the growth of x5
Equilibria:

o — 975 = L
{ r1(3 — 23 z2) =0 —> Separate to four combinations

5132(2—331 —.272) =0

e %

) 581:0 ) 3—561—2262:()
\332:0 LZEQZO

<’ 1 =0 <”3—x1—2x2:o
\2—%1—332:0 LQ—QZ‘l—LL’Q:O

Four equilibria: (z1,z2) = (0,0), (3,0), (0,2), (1,1).



Example 4. Linear dynamics near (0,0)

The Linear Approximating
System near equilibrium (0, 0):

2= o 2| o)



Example 4. Linear dynamics near (0,0)

The Linear Approximating
System near equilibrium (0, 0):

2= o 2| o)

Eigenvalues & Eigenvectors:

A =3, Wy — (1)
. 0]
)\2 — 2, Wo — _1_



Example 4. Linear dynamics near (0,0)

Linear Approx Dynamics Near (0,0)

The Linear Approximating
System near equilibrium (0, 0):

| /
098 N/

Eigenvalues & Eigenvectors: ///«

3|

by

=

M3 = |t N

1 — ] 1 — -O_ X,
S 0

)\2:2, Wo — 1 )

Equilibrium (0, 0) is
a nodal source.



Example 4. Linear dynamics near (3,0)

The Linear Approximating
System near equilibrium (3, 0):

Bl piily



Example 4. Linear dynamics near (3,0)

The Linear Approximating
System near equilibrium (3, 0):

zi| |3 —6| |x1—3
Th 0 -1 T
Eigenvalues & Eigenvectors:

AN = 3, W= H

Ao = —1, Wo= [_13]



Example 4. Linear dynamics near (3,0)

4 -

The Linear Approximating //,_/é
System near equilibrium (3,0): %

zi|  |—-3 —6| |x1—3 y 2-
s 0 -1 T N (¢

Eigenvalues & Eigenvectors:

Linear Approx Dynamics Near (3,0)

A = -3, Wy = H

Equilibrium (3,0) is
a nodal sink



Example 4. Linear dynamics near (0,2)

The Linear Approximating
System near equilibrium (0, 2):

EiREt |t



Example 4. Linear dynamics near (0,2)

The Linear Approximating
System near equilibrium (0, 2):

EiREt |t

Eigenvalues & Eigenvectors:

At =—2, Wi = [(1)]

Ao = —1, Wy = [_21]



Example 4. Linear dynamics near (0, 2)

Linear Approx Dynamics Near (0,2)

The Linear Approximating
System near equilibrium (0, 2):

T _ —1 0 1 Y/ 7
| T -2 =2 o -2 /
Eigenvalues & Eigenvectors: LY /
\
/
A =2, W= H K 1 \//5
1 1
1_
B -1
— N

Equilibrium (0, 2) is
a nodal sink

\ ;




Example 4. Linear dynamics near (1,1)

The Linear Approximating System
near equilibrium (1, 1):

A i



Example 4. Linear dynamics near (1,1)

The Linear Approximating System
near equilibrium (1, 1):

i |1 =2| |z —1
rh|  |—-1 —1| |zo—1
Eigenvalues & Eigenvectors:

M=-1+vV2>0

Ao =—-1-12<0
=Y

W2 =1



Example 4. Linear dynamics near (1,1)

The Linear Approximating System

near equilibrium (1, 1):

] [-1 =2] [z —1
2| T =1 =1 |za—1

Eigenvalues & Eigenvectors:

M=-1+vV2>0

Ao =—-1-12<0
=Y

W2 =1

Linear Approx Dynamics Near (1,1)

7

e

A
/

SN

Equilibrium (1, 1) is a saddle



Linear Approx Dynamics Near (0,2)

Linear Approx Dynamics Near (0,0)

Local Phase Portraits
Of Nonlinear System
near equilibria

Linear Approx Dynamics Near (1,1)

Linear Approx Dynamics Near (3,0)




dt
dx,
d_ = x2(2 —x1 — x3)
Nullclines
4 x
" =)
JF1
3_
1_
1 2 3



Direction Fields on the Nullclines

4y x,




Example 4. Global phase portrait

Nonlinear Dynamics



Example 4. Discussion

Nonlinear Dynamics

P




Example 4. Discussion

» The survival-extinction states
(3,0) and (0,2) are both

Nonlinear Dynamics

asymptotically stable. v
34
X, 2 -
N
1 /




Example 4. Discussion

» The survival-extinction states
(3,0) and (0,2) are both

Nonlinear Dynamics

asymptotically stable. v
» The co-existence state (1,1) is .
unstable.
X, 2 -
A
1 /




Example 4. Discussion

» The survival-extinction states
(3,0) and (0,2) are both

Nonlinear Dynamics

asymptotically stable. v
» The co-existence state (1,1) is .
unstable.
X, 2
» Almost all positive solutions A
converge to either (3,0) or (0,2). 1 /




Example 4. Discussion

» The survival-extinction states
(3,0) and (0,2) are both

Nonlinear Dynamics

asymptotically stable. v
» The co-existence state (1,1) is .
unstable.
X, 2
» Almost all positive solutions A
converge to either (3,0) or (0,2). 1 /

» A small difference in the initial .
conditions may make a huge
difference in a species’ destiny.




Example 4. (continued. Strong competition)

A small difference in the initial conditions may make a huge difference
in a species’ destiny.

Initial data:
As t — o0, (x1,22) — (3,0).

Solution Graphs X, (¢) and xz(t) Vs ¢




Example 4. (continued. Strong competition)

A small difference in the initial conditions may make a huge difference
in a species’ destiny.

Initial data: Initial data:
As t — o0, (x1,22) — (3,0). Ast — o0, (z1,22) — (0, 2).
Solution Graphs X, (¢) and xz(t) Vs ¢ Solution Graphs xl(t) and xz(t) Vs ¢
4 4




Example 4. (continued. Strong competition)

Question: Why is the co-existence unstable in this system?

Nonlinear Dynamics

r




Example 4. (continued. Strong competition)
Question: Why is the co-existence unstable in this system?

Answer: Strong competition.

Nonlinear Dynamics




Example 4. (continued. Strong competition)
Question: Why is the co-existence unstable in this system?

Answer: Strong competition.

Nonlinear Dynamics

{ i =x1(3 —x1 —2x5 ) Y

T =x9(2 —x1 —xIg ) 3
A
"Wz




Example 4. (continued. Strong competition)
Question: Why is the co-existence unstable in this system?

Answer: Strong competition.

Nonlinear Dynamics

i =x1(3 —x1 —2x5 ) \/
rh=x9(2 —x1 —x9 ) 3
The competition terms
X, 2
—2x9 and —x; 2




Example 4. (continued. Strong competition)
Question: Why is the co-existence unstable in this system?

Answer: Strong competition.

Nonlinear Dynamics

i =x1(3 —x1 —2x5 ) \
rh=x9(2 —x1 —x9 ) 3
The competition terms
—2x9 and —x; * 29
N
1 -
/’
the resource inhibition terms /
—x7 and —x9 5 7 > 3 I <




Example 4. (continued. Strong competition)

Question: Why is the co-existence unstable in this system?

Answer: Strong competition.

Nonlinear Dynamics

{ i =x1(3 —x1 —2x5 ) Y

rh=x9(2 —x1 —x9 ) 3

The competition terms
—2x9 and —x; 2

N
ARE STRONGER THAN 1]
s
the resource inhibition terms ‘ /A

—x7 and —x9 5 7 > 3 I <




Example 4. (continued. Strong competition)
Question: Why is the co-existence unstable in this system?

Answer: Strong competition.

Nonlinear Dynamics

i =x1(3 —x1 —2x5 ) \/
rh=x9(2 —x1 —x9 ) 3
The competition terms
—2x9 and —x; * 29
A\ 7 A
ARE STRoONGER THAN 1.
/’
the resource inhibition terms /
—x7 and —x9 5 7 > 3 I <

*1

1| B
1 1

One species survives,
the other extincts.

det [ ] < 0 = Strong competition = {





