2D Homogeneous Linear Systems withConstant Coefficientsdistinct nonzero real eigenvalues

Xu-Yan Chen

$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

Systems of Diff Eqs:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$
 where $\vec{\mathbf{x}}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, A is a 2×2 real constant matrix

Things to explore:

- ► General solutions
- Initial value problems
- Geometric figures
 - \triangleright Solutions graphs x_1 vs $t \& x_2$ vs t
 - \triangleright Direction fields in the (x_1, x_2) plane
 - Phase portraits in the (x_1, x_2) plane
- Stability/instability of equilibrium $(x_1, x_2) = (0, 0)$

2D Systems: $\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$

How to solve?

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

► Find eigenvalues of A, by solving the characteristic polynomial $\det(A - \lambda I) = 0 \Rightarrow \lambda = \lambda_1, \lambda_2$

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

Find eigenvalues of A, by solving the characteristic polynomial $\det(A - \lambda I) = 0 \Rightarrow \lambda = \lambda_1, \lambda_2$ In what follows, we assume that $\lambda_1 \neq \lambda_2$.

(The case of $\lambda_1 = \lambda_2$ will be discussed somewhere else.)

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

- Find eigenvalues of A, by solving the characteristic polynomial $\det(A \lambda I) = 0 \Rightarrow \lambda = \lambda_1, \lambda_2$ In what follows, we assume that $\lambda_1 \neq \lambda_2$. (The case of $\lambda_1 = \lambda_2$ will be discussed somewhere else.)
- Find an eigenvector $\vec{\mathbf{u}}_1$ for λ_1 , by solving $(A \lambda_1 I)\vec{\mathbf{x}} = 0$.

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

- Find eigenvalues of A, by solving the characteristic polynomial det(A − λI) = 0 ⇒ λ = λ₁, λ₂
 In what follows, we assume that λ₁ ≠ λ₂.
 (The case of λ₁ = λ₂ will be discussed somewhere else.)
- Find an eigenvector $\vec{\mathbf{u}}_1$ for λ_1 , by solving $(A \lambda_1 I)\vec{\mathbf{x}} = 0$.
- Find an eigenvector $\vec{\mathbf{u}}_2$ for λ_2 , by solving $(A \lambda_2 I)\vec{\mathbf{x}} = 0$.

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

Find eigenvalues of A, by solving the characteristic polynomial det(A − λI) = 0 ⇒ λ = λ₁, λ₂
 In what follows, we assume that λ₁ ≠ λ₂.
 (The case of λ₁ = λ₂ will be discussed somewhere else.)

- Find an eigenvector $\vec{\mathbf{u}}_1$ for λ_1 , by solving $(A \lambda_1 I)\vec{\mathbf{x}} = 0$.
- Find an eigenvector $\vec{\mathbf{u}}_2$ for λ_2 , by solving $(A \lambda_2 I)\vec{\mathbf{x}} = 0$.
- ► General solutions are

$$\vec{\mathbf{x}}(t) = C_1 e^{\lambda_1 t} \vec{\mathbf{u}}_1 + C_2 e^{\lambda_2 t} \vec{\mathbf{u}}_2,$$
 where C_1, C_2 are free parameters.

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

Find eigenvalues of A, by solving the characteristic polynomial $\det(A - \lambda I) = 0 \Rightarrow \lambda = \lambda_1, \lambda_2$

In what follows, we assume that $\lambda_1 \neq \lambda_2$. (The case of $\lambda_1 = \lambda_2$ will be discussed somewhere else.)

- Find an eigenvector $\vec{\mathbf{u}}_1$ for λ_1 , by solving $(A \lambda_1 I)\vec{\mathbf{x}} = 0$.
- Find an eigenvector $\vec{\mathbf{u}}_2$ for λ_2 , by solving $(A \lambda_2 I)\vec{\mathbf{x}} = 0$.
- ► General solutions are

$$\vec{\mathbf{x}}(t) = C_1 e^{\lambda_1 t} \vec{\mathbf{u}}_1 + C_2 e^{\lambda_2 t} \vec{\mathbf{u}}_2,$$

where C_1, C_2 are free parameters.

If initial condition is given, $\vec{\mathbf{x}}(0) = \vec{\mathbf{x}}_0 \Rightarrow C_1, C_2 \Rightarrow \text{a unique solution.}$

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

Phase portraits & stability of the equilibrium (0,0):

Let λ_1 and λ_2 be the eigenvalues of A.

$$\lambda_1 < 0, \lambda_2 < 0, \lambda_1 \neq \lambda_2$$

- \Rightarrow Nodal sink, asymtotically stable
- $\lambda_1 > 0, \lambda_2 > 0, \lambda_1 \neq \lambda_2$
 - \Rightarrow Nodal source, unstable
- $\lambda_1 > 0, \lambda_2 < 0),$ $or (\lambda_1 < 0, \lambda_2 > 0)$
 - \Rightarrow Saddle, unstable

Example 1.

Consider
$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$$
, where $A = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix}$.

- (a) Find general solutions of $\vec{\mathbf{x}}' = \begin{bmatrix} -3 & 2 \\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}$.
- (b) Solve the initial value problem $\vec{\mathbf{x}}' = \begin{bmatrix} -3 & 2 \\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.
- (c) Sketch the phase portrait.
- (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

Example 1 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}$$

Example 1 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}$$

► Eigenvalues of A, by solving $det(A - \lambda I) = 0$:

Example 1 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}$$

▶ Eigenvalues of A, by solving $det(A - \lambda I) = 0$:

$$\det \begin{bmatrix} -3 - \lambda & 2 \\ 1 & -4 - \lambda \end{bmatrix}$$

Example 1 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -3 - \lambda & 2 \\ 1 & -4 - \lambda \end{bmatrix} = \lambda^2 + 7\lambda + 10 = 0$$

Example 1 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}$$

▶ Eigenvalues of A, by solving $det(A - \lambda I) = 0$:

$$\det \begin{bmatrix} -3 - \lambda & 2 \\ 1 & -4 - \lambda \end{bmatrix} = \lambda^2 + 7\lambda + 10 = 0$$

$$\Rightarrow \lambda_1 = -2, \lambda_2 = -5$$

Example 1 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -3 & 2\\ 1 & -4 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -3 - \lambda & 2 \\ 1 & -4 - \lambda \end{bmatrix} = \lambda^2 + 7\lambda + 10 = 0$$

$$\Rightarrow \lambda_1 = -2, \lambda_2 = -5$$

► Eigenvectors of A for $\lambda_1 = -2$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

Example 1 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -3 & 2\\ 1 & -4 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -3 - \lambda & 2 \\ 1 & -4 - \lambda \end{bmatrix} = \lambda^2 + 7\lambda + 10 = 0$$

$$\Rightarrow \lambda_1 = -2, \lambda_2 = -5$$

► Eigenvectors of A for $\lambda_1 = -2$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$(A+2I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} -1 & 2\\ 1 & -2 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

Example 1 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -3 & 2\\ 1 & -4 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -3 - \lambda & 2 \\ 1 & -4 - \lambda \end{bmatrix} = \lambda^2 + 7\lambda + 10 = 0$$

$$\Rightarrow \lambda_1 = -2, \lambda_2 = -5$$

▶ Eigenvectors of A for $\lambda_1 = -2$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$(A+2I)\vec{\mathbf{x}}=0 \Leftrightarrow \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow x_1 = 2x_2$$

Example 1 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -3 & 2\\ 1 & -4 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -3 - \lambda & 2 \\ 1 & -4 - \lambda \end{bmatrix} = \lambda^2 + 7\lambda + 10 = 0$$

$$\Rightarrow \lambda_1 = -2, \lambda_2 = -5$$

▶ Eigenvectors of A for $\lambda_1 = -2$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$\begin{split} (A+2I)\vec{\mathbf{x}} &= 0 \Leftrightarrow \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ \Leftrightarrow x_1 &= 2x_2 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} \end{split}$$

Example 1 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -3 & 2\\ 1 & -4 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -3 - \lambda & 2 \\ 1 & -4 - \lambda \end{bmatrix} = \lambda^2 + 7\lambda + 10 = 0$$

$$\Rightarrow \lambda_1 = -2, \lambda_2 = -5$$

► Eigenvectors of A for $\lambda_1 = -2$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$(A+2I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow x_1 = 2x_2 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\Rightarrow \text{An eigenvector } \vec{\mathbf{u}}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Example 1 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -3 & 2\\ 1 & -4 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -3 - \lambda & 2 \\ 1 & -4 - \lambda \end{bmatrix} = \lambda^2 + 7\lambda + 10 = 0$$

$$\Rightarrow \lambda_1 = -2, \lambda_2 = -5$$

▶ Eigenvectors of A for $\lambda_1 = -2$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$(A+2I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow x_1 = 2x_2 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\Rightarrow \text{ An eigenvector } \vec{\mathbf{u}}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\Rightarrow \text{ Partial solutions: } \vec{\mathbf{x}}(t) = Ce^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

Need more to get complete solution formula.

Example 1 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = -2, \lambda_2 = -5$
- An eigenvector for $\lambda_1 = -2$: $\vec{\mathbf{u}}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

Example 1 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -3 & 2\\ 1 & -4 \end{vmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = -2, \lambda_2 = -5$
- An eigenvector for $\lambda_1 = -2$: $\vec{\mathbf{u}}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
- ▶ An eigenvector for $\lambda_2 = -5$, by solving $(A \lambda_2 I)\vec{\mathbf{x}} = 0$:

$$(A+5I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\Leftrightarrow x_1 + x_2 = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow x_1 + x_2 = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\Rightarrow$$
 An eigenvector $\vec{\mathbf{u}}_2 = \begin{bmatrix} -1\\1 \end{bmatrix}$

Example 1 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -3 & 2\\ 1 & -4 \end{vmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = -2, \lambda_2 = -5$
- ▶ An eigenvector for $\lambda_1 = -2$: $\vec{\mathbf{u}}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
- ▶ An eigenvector for $\lambda_2 = -5$, by solving $(A \lambda_2 I)\vec{\mathbf{x}} = 0$:

$$(A+5I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\Leftrightarrow x_1 + x_2 = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
$$\Rightarrow \text{An eigenvector } \vec{\mathbf{u}}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

▶ General solutions are

$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2\\1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1\\1 \end{bmatrix},$$

where C_1, C_2 are free parameters.

Example 1 (b) Solve $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2\\ 3 \end{bmatrix}$

Example 1 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2\\ 3 \end{bmatrix}$$

► General solutions:

$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2\\1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1\\1 \end{bmatrix}$$

Example 1 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2\\ 3 \end{bmatrix}$$

► General solutions:

$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 5/3 \\ 4/3 \end{bmatrix}$$

Example 1 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2\\ 3 \end{bmatrix}$$

► General solutions:

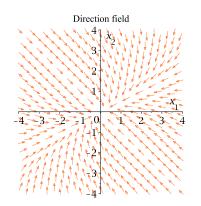
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

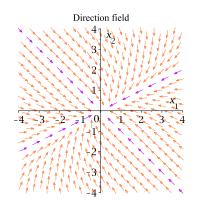
$$\Rightarrow \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 5/3 \\ 4/3 \end{bmatrix}$$

▶ The solution to the initial value problem:


$$\vec{\mathbf{x}}(t) = \frac{5}{3}e^{-2t} \begin{bmatrix} 2\\1 \end{bmatrix} + \frac{4}{3}e^{-5t} \begin{bmatrix} -1\\1 \end{bmatrix}$$

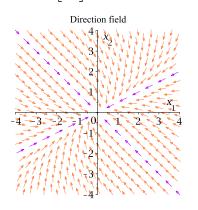
Example 1 (c) Phase portrait of $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}$

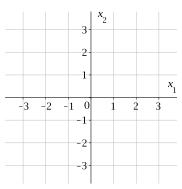
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$


Example 1 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}$$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Example 1 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}$$

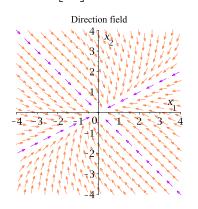

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

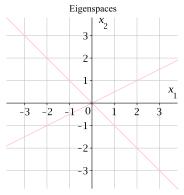


Example 1 (c) Phase portrait of $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

- $C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ decays to the origin, along the eigenspace of $\lambda_1 = -2$.
- $C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ decays to the origin, along the eigenspace of $\lambda_2 = -5$.

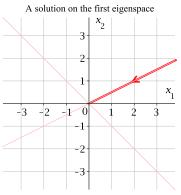




Example 1 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}$$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} at \\ -1 \\ 1 \end{bmatrix}$$

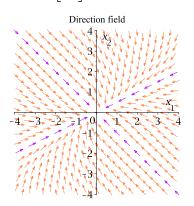
- $C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ decays to the origin, along the eigenspace of $\lambda_1 = -2$.
- $C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ decays to the origin, along the eigenspace of $\lambda_2 = -5$.

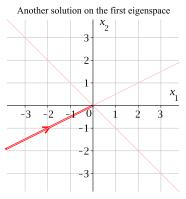


Example 1 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}$$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} at \\ -1 \\ 1 \end{bmatrix}$$

- $C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ decays to the origin, along the eigenspace of $\lambda_1 = -2$.
- $C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ decays to the origin, along the eigenspace of $\lambda_2 = -5$.

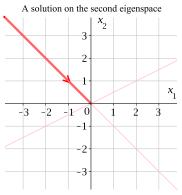




Example 1 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}$$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} at \\ -1 \\ 1 \end{bmatrix}$$

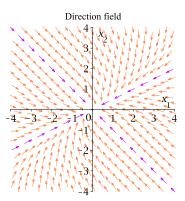
- $C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ decays to the origin, along the eigenspace of $\lambda_1 = -2$.
- $C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ decays to the origin, along the eigenspace of $\lambda_2 = -5$.

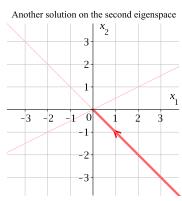


Example 1 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}$$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} at \\ -1 \\ 1 \end{bmatrix}$$

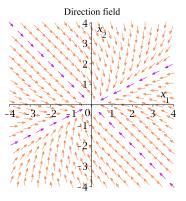
- $C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ decays to the origin, along the eigenspace of $\lambda_1 = -2$.
- $C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ decays to the origin, along the eigenspace of $\lambda_2 = -5$.

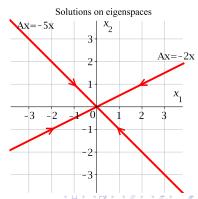




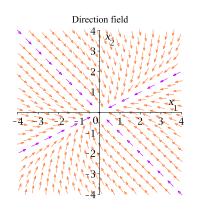
Example 1 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & 2\\ 1 & -4 \end{bmatrix} \vec{\mathbf{x}}$$

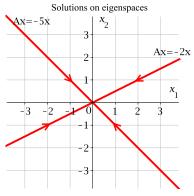
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$


- $C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ decays to the origin, along the eigenspace of $\lambda_1 = -2$.
- $C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ decays to the origin, along the eigenspace of $\lambda_2 = -5$.

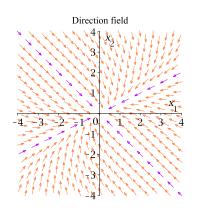


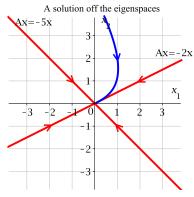
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$


- C₁e^{-2t} [2] decays to the origin, along the eigenspace of λ₁ = -2.
 C₂e^{-5t} [-1] decays to the origin, along the eigenspace of λ₂ = -5.

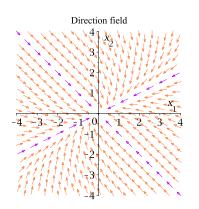


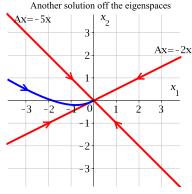
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$


When
$$C_1$$
 and C_2 are both $\neq 0$, $\vec{\mathbf{x}}(t) \approx C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ as $t \approx \infty$.

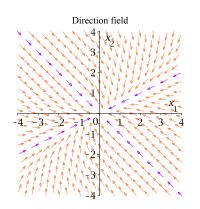


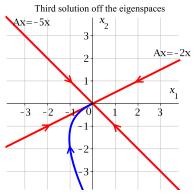
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$


When C_1 and C_2 are both $\neq 0$, $\vec{\mathbf{x}}(t) \approx C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ as $t \approx \infty$.

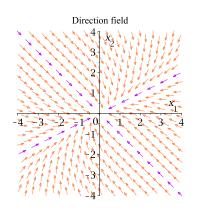


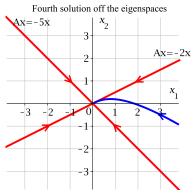
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$


When C_1 and C_2 are both $\neq 0$, $\vec{\mathbf{x}}(t) \approx C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ as $t \approx \infty$.

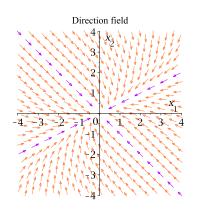


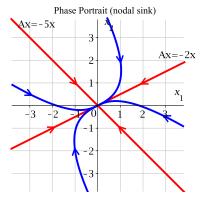
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$


When C_1 and C_2 are both $\neq 0$, $\vec{\mathbf{x}}(t) \approx C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ as $t \approx \infty$.

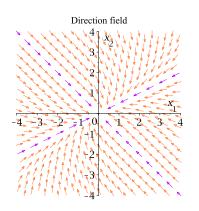


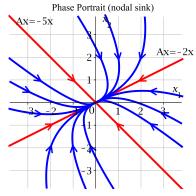
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$


When C_1 and C_2 are both $\neq 0$, $\vec{\mathbf{x}}(t) \approx C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ as $t \approx \infty$.

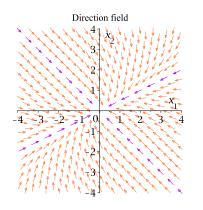


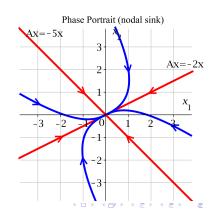
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$


When
$$C_1$$
 and C_2 are both $\neq 0$, $\vec{\mathbf{x}}(t) \approx C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ as $t \approx \infty$.

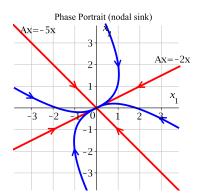


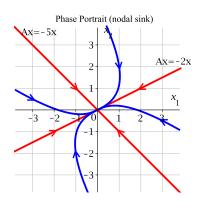
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$


When C_1 and C_2 are both $\neq 0$, $\vec{\mathbf{x}}(t) \approx C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ as $t \approx \infty$.



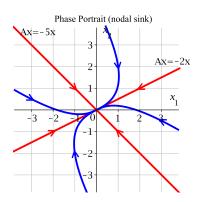
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$


When
$$C_1$$
 and C_2 are both $\neq 0$, $\vec{\mathbf{x}}(t) \approx C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ as $t \approx \infty$.


Example 1 (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Example 1 (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?


General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

The equilibrium (0,0) is asymptotically stable.

Example 1 (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

The equilibrium (0,0) is asymptotically stable.

We have a nodal sink, when $\lambda_1 < 0, \lambda_2 < 0, \lambda_1 \neq \lambda_2$.

Example 2.

Consider
$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$$
, where $A = \begin{bmatrix} 16 & -5 \\ 2 & 5 \end{bmatrix}$.

- (a) Find general solutions of $\vec{\mathbf{x}}' = \begin{bmatrix} 16 & -5 \\ 2 & 5 \end{bmatrix} \vec{\mathbf{x}}$.
- (b) Solve the initial value problem $\vec{\mathbf{x}}' = \begin{bmatrix} 16 & -5 \\ 2 & 5 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$
- (c) Sketch the phase portrait.
- (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

Example 2 (a) $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 16 & -5 \\ 2 & 5 \end{bmatrix} \vec{\mathbf{x}}$

Example 2 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 16 & -5 \\ 2 & 5 \end{bmatrix} \vec{\mathbf{x}}$$

Example 2 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 16 & -5 \\ 2 & 5 \end{bmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} 16 - \lambda & -5 \\ 2 & 5 - \lambda \end{bmatrix}$$

Example 2 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 16 & -5 \\ 2 & 5 \end{bmatrix} \vec{\mathbf{x}}$$

$$\det\begin{bmatrix} 16 - \lambda & -5 \\ 2 & 5 - \lambda \end{bmatrix} = \lambda^2 - 21\lambda + 90 = 0$$

Example 2 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 16 & -5 \\ 2 & 5 \end{bmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} 16 - \lambda & -5 \\ 2 & 5 - \lambda \end{bmatrix} = \lambda^2 - 21\lambda + 90 = 0$$

$$\Rightarrow \lambda_1 = 15, \lambda_2 = 6$$

Example 2 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 16 & -5 \\ 2 & 5 \end{bmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} 16 - \lambda & -5 \\ 2 & 5 - \lambda \end{bmatrix} = \lambda^2 - 21\lambda + 90 = 0$$

$$\Rightarrow \lambda_1 = 15, \lambda_2 = 6$$

► Eigenvectors of A for $\lambda_1 = 15$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

Example 2 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} 16 & -5 \\ 2 & 5 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} 16 - \lambda & -5 \\ 2 & 5 - \lambda \end{bmatrix} = \lambda^2 - 21\lambda + 90 = 0$$

$$\Rightarrow \lambda_1 = 15, \lambda_2 = 6$$

Eigenvectors of A for $\lambda_1 = 15$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$(A - 15I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} 1 & -5 \\ 2 & -10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Example 2 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} 16 & -5 \\ 2 & 5 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} 16 - \lambda & -5 \\ 2 & 5 - \lambda \end{bmatrix} = \lambda^2 - 21\lambda + 90 = 0$$

$$\Rightarrow \lambda_1 = 15, \lambda_2 = 6$$

► Eigenvectors of A for $\lambda_1 = 15$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$(A - 15I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} 1 & -5 \\ 2 & -10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\Leftrightarrow x_1 - 5x_2 = 0$$

Example 2 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} 16 & -5 \\ 2 & 5 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} 16 - \lambda & -5 \\ 2 & 5 - \lambda \end{bmatrix} = \lambda^2 - 21\lambda + 90 = 0$$

$$\Rightarrow \lambda_1 = 15, \lambda_2 = 6$$

► Eigenvectors of A for $\lambda_1 = 15$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$(A - 15I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} 1 & -5 \\ 2 & -10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\Leftrightarrow x_1 - 5x_2 = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

Example 2 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} 16 & -5 \\ 2 & 5 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} 16 - \lambda & -5 \\ 2 & 5 - \lambda \end{bmatrix} = \lambda^2 - 21\lambda + 90 = 0$$

$$\Rightarrow \lambda_1 = 15, \lambda_2 = 6$$

▶ Eigenvectors of A for $\lambda_1 = 15$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$(A - 15I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} 1 & -5 \\ 2 & -10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\Leftrightarrow x_1 - 5x_2 = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$
$$\Rightarrow \text{An eigenvector } \vec{\mathbf{u}}_1 = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

Example 2 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} 16 & -5 \\ 2 & 5 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} 16 - \lambda & -5 \\ 2 & 5 - \lambda \end{bmatrix} = \lambda^2 - 21\lambda + 90 = 0$$

$$\Rightarrow \lambda_1 = 15, \lambda_2 = 6$$

▶ Eigenvectors of A for $\lambda_1 = 15$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$(A - 15I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} 1 & -5 \\ 2 & -10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow x_1 - 5x_2 = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

$$\Rightarrow \text{An eigenvector } \vec{\mathbf{u}}_1 = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

$$\Rightarrow \text{Partial solutions: } \vec{\mathbf{x}}(t) = Ce^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix}.$$

Need more to get complete solution formula.

Example 2 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 16 & -5 \\ 2 & 5 \end{bmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = 15, \lambda_2 = 6$
- An eigenvector for $\lambda_1 = 15$: $\vec{\mathbf{u}}_1 = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$

Example 2 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} 16 & -5 \\ 2 & 5 \end{vmatrix} \vec{\mathbf{x}}$$

- Eigenvalues of A: $\lambda_1 = 15, \lambda_2 = 6$
- An eigenvector for $\lambda_1 = 15$: $\vec{\mathbf{u}}_1 = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$
- ▶ An eigenvector for $\lambda_2 = 6$, by solving $(A \lambda_2 I)\vec{\mathbf{x}} = 0$:

$$(A - 6I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} 10 & -5\\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

$$\Leftrightarrow 2x_1 - x_2 = 0 \Leftrightarrow \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 1/2\\ 1 \end{bmatrix}$$

$$\Rightarrow \text{An eigenvector } \vec{\mathbf{u}}_2 = \begin{bmatrix} 1\\ 2 \end{bmatrix}$$

Example 2 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} 16 & -5 \\ 2 & 5 \end{vmatrix} \vec{\mathbf{x}}$$

- Eigenvalues of A: $\lambda_1 = 15, \lambda_2 = 6$
- An eigenvector for $\lambda_1 = 15$: $\vec{\mathbf{u}}_1 = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$
- ▶ An eigenvector for $\lambda_2 = 6$, by solving $(A \lambda_2 I)\vec{\mathbf{x}} = 0$:

$$(A - 6I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} 10 & -5 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow 2x_1 - x_2 = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 1/2 \\ 1 \end{bmatrix}$$

$$\Rightarrow \text{An eigenvector } \vec{\mathbf{u}}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

▶ General solutions are

$$\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5\\1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1\\2 \end{bmatrix},$$

where C_1, C_2 are free parameters.

Example 2 (b) Solve $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 16 & -5 \\ 2 & 5 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

Example 2 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 16 & -5 \\ 2 & 5 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

► General solutions:

$$\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5\\1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1\\2 \end{bmatrix}$$

Example 2 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 16 & -5 \\ 2 & 5 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

► General solutions:

$$\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5\\1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1\\2 \end{bmatrix}$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 2\\3 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} 5\\1 \end{bmatrix} + C_2 \begin{bmatrix} 1\\2 \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 5 & 1\\1 & 2 \end{bmatrix} \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 1/9\\13/9 \end{bmatrix}$$

Example 2 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 16 & -5 \\ 2 & 5 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

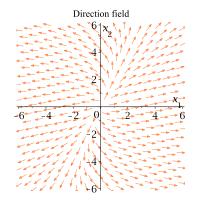
► General solutions:

$$\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5\\1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1\\2 \end{bmatrix}$$

▶ Use the initial condition:

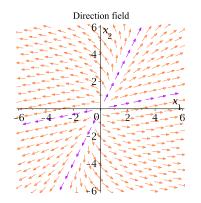
$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 2\\3 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} 5\\1 \end{bmatrix} + C_2 \begin{bmatrix} 1\\2 \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 5\\1 \end{bmatrix} \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 1/9\\13/9 \end{bmatrix}$$


▶ The solution to the initial value problem:

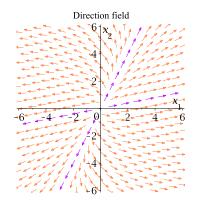
$$\vec{\mathbf{x}}(t) = \frac{1}{9}e^{15t} \begin{bmatrix} 5\\1 \end{bmatrix} + \frac{13}{9}e^{6t} \begin{bmatrix} 1\\2 \end{bmatrix}$$

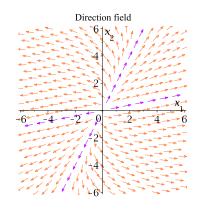
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

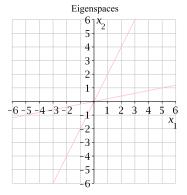

Example 2 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 16 & -5 \\ 2 & 5 \end{bmatrix} \vec{\mathbf{x}}$$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

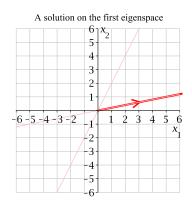
Example 2 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 16 & -5 \\ 2 & 5 \end{bmatrix} \vec{\mathbf{x}}$$

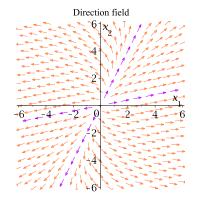

General solutions: $\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$


Example 2 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 16 & -5 \\ 2 & 5 \end{bmatrix} \vec{\mathbf{x}}$$
General solutions: $\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

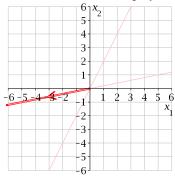

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

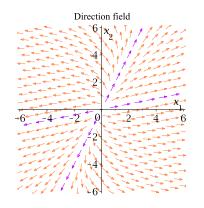
- $C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix}$ leaves away, along the eigenspace of $\lambda_1 = 15$.
- $C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ leaves away, along the eigenspace of $\lambda_2 = 6$.

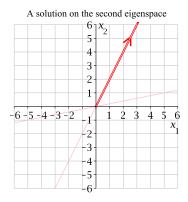




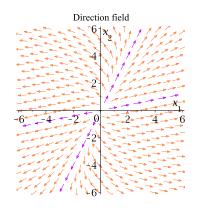
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

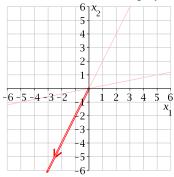





Example 2 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 16 & -5 \\ 2 & 5 \end{bmatrix} \vec{\mathbf{x}}$$
General solutions: $\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

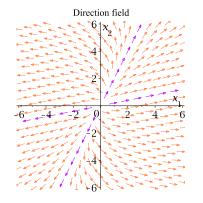
Another solution on the first eigenspace

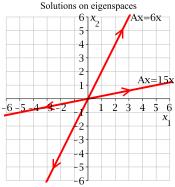




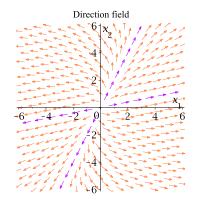
Example 2 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 16 & -5 \\ 2 & 5 \end{bmatrix} \vec{\mathbf{x}}$$
General solutions: $\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

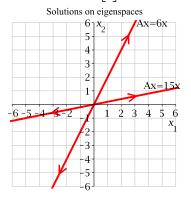
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$




Another solution on the second eigenspace

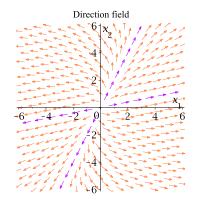
Example 2 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 16 & -5 \\ 2 & 5 \end{bmatrix} \vec{\mathbf{x}}$$


General solutions: $\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

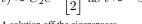


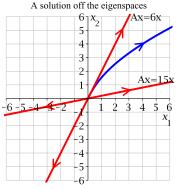
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) \approx C_1 e^{15t} \begin{bmatrix} 5\\1 \end{bmatrix}$$
 as $t \approx \infty$;

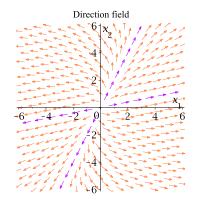


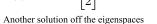
$$\vec{\mathbf{x}}(t) \approx C_2 e^{6t} \begin{vmatrix} 1 \\ 2 \end{vmatrix}$$
 as $t \approx -\infty$.

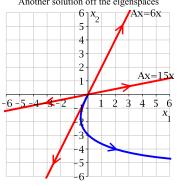



General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) \approx C_1 e^{15t} \begin{bmatrix} 5\\1 \end{bmatrix}$$
 as $t \approx \infty$;

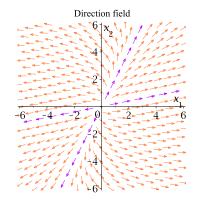

$$\vec{\mathbf{x}}(t) \approx C_2 e^{6t} \begin{bmatrix} 1\\2 \end{bmatrix}$$
 as $t \approx -\infty$.



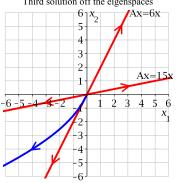

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) \approx C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$
 as $t \approx \infty$;

$$\vec{\mathbf{x}}(t) \approx C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 as $t \approx -\infty$.

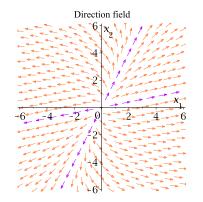


General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

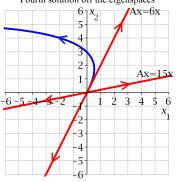

When C_1 and C_2 are both $\neq 0$,

$$\vec{\mathbf{x}}(t) \approx C_1 e^{15t} \begin{bmatrix} 5\\1 \end{bmatrix}$$
 as $t \approx \infty$;

$$\vec{\mathbf{x}}(t) \approx C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 as $t \approx -\infty$.

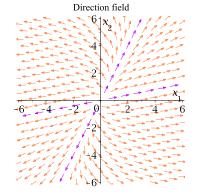

Third solution off the eigenspaces

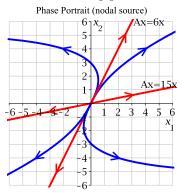
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$


When C_1 and C_2 are both $\neq 0$,

$$\vec{\mathbf{x}}(t) \approx C_1 e^{15t} \begin{bmatrix} 5\\1 \end{bmatrix}$$
 as $t \approx \infty$;

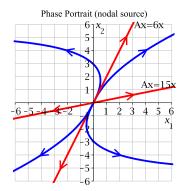
$$\vec{\mathbf{x}}(t) \approx C_2 e^{6t} \begin{vmatrix} 1 \\ 2 \end{vmatrix}$$
 as $t \approx -\infty$.


Fourth solution off the eigenspaces

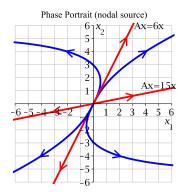

Example 2 (c) Phase portrait of $\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} 16 & -5 \\ 2 & 5 \end{vmatrix} \vec{\mathbf{x}}$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) \approx C_1 e^{15t} \begin{bmatrix} 5\\1 \end{bmatrix}$$
 as $t \approx \infty$;

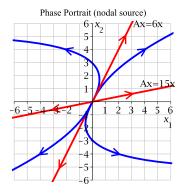


$$\vec{\mathbf{x}}(t) \approx C_2 e^{6t} \begin{bmatrix} 1\\2 \end{bmatrix}$$
 as $t \approx -\infty$.


Example 2 (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Example 2 (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?


General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

The equilibrium (0,0) is unstable.

Example 2 (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{15t} \begin{bmatrix} 5 \\ 1 \end{bmatrix} + C_2 e^{6t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

The equilibrium (0,0) is unstable.

We have a *nodal source*, when $\lambda_1 > 0, \lambda_2 > 0, \lambda_1 \neq \lambda_2$.

Example 3.

Consider
$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$$
, where $A = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix}$.

- (a) Find general solutions of $\vec{\mathbf{x}}' = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix} \vec{\mathbf{x}}$.
- (b) Solve the initial value problem $\vec{\mathbf{x}}' = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$
- (c) Sketch the phase portrait.
- (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

Example 3 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix} \vec{\mathbf{x}}$$

Example 3 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix} \vec{\mathbf{x}}$$

Example 3 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix} \vec{\mathbf{x}}$$

ightharpoonup Eigenvalues of A, by solving $\det(A - \lambda I) = 0$:

$$\det \begin{bmatrix} -2 - \lambda & -3 \\ -6 & 1 - \lambda \end{bmatrix}$$

Example 3 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -2 - \lambda & -3 \\ -6 & 1 - \lambda \end{bmatrix} = \lambda^2 + \lambda - 20 = 0$$

Example 3 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -2 - \lambda & -3 \\ -6 & 1 - \lambda \end{bmatrix} = \lambda^2 + \lambda - 20 = 0$$

$$\Rightarrow \lambda_1 = -5, \lambda_2 = 4$$

Example 3 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -2 & -3 \\ -6 & 1 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -2 - \lambda & -3 \\ -6 & 1 - \lambda \end{bmatrix} = \lambda^2 + \lambda - 20 = 0$$

$$\Rightarrow \lambda_1 = -5, \lambda_2 = 4$$

Example 3 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -2 & -3 \\ -6 & 1 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -2 - \lambda & -3 \\ -6 & 1 - \lambda \end{bmatrix} = \lambda^2 + \lambda - 20 = 0$$

$$\Rightarrow \lambda_1 = -5, \lambda_2 = 4$$

$$(A+5I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} 3 & -3 \\ -6 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Example 3 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -2 & -3 \\ -6 & 1 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -2 - \lambda & -3 \\ -6 & 1 - \lambda \end{bmatrix} = \lambda^2 + \lambda - 20 = 0$$

$$\Rightarrow \lambda_1 = -5, \lambda_2 = 4$$

$$(A+5I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} 3 & -3 \\ -6 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow 3x_1 - 3x_2 = 0$$

Example 3 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -2 & -3 \\ -6 & 1 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -2 - \lambda & -3 \\ -6 & 1 - \lambda \end{bmatrix} = \lambda^2 + \lambda - 20 = 0$$

$$\Rightarrow \lambda_1 = -5, \lambda_2 = 4$$

$$(A+5I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} 3 & -3 \\ -6 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\Leftrightarrow 3x_1 - 3x_2 = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Example 3 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -2 & -3 \\ -6 & 1 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -2 - \lambda & -3 \\ -6 & 1 - \lambda \end{bmatrix} = \lambda^2 + \lambda - 20 = 0$$

$$\Rightarrow \lambda_1 = -5, \lambda_2 = 4$$

$$(A+5I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} 3 & -3 \\ -6 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow 3x_1 - 3x_2 = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\Rightarrow \text{An eigenvector } \vec{\mathbf{u}}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Example 3 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = -5, \lambda_2 = 4$
- An eigenvector for $\lambda_1 = -5$: $\vec{\mathbf{u}}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Example 3 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -2 & -3 \\ -6 & 1 \end{vmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = -5, \lambda_2 = 4$
- An eigenvector for $\lambda_1 = -5$: $\vec{\mathbf{u}}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- ▶ An eigenvector for $\lambda_2 = 4$, by solving $(A \lambda_2 I)\vec{\mathbf{x}} = 0$:

$$(A - 4I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} -6 & -3 \\ -6 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\Leftrightarrow -6x_1 - 3x_2 = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -1/2 \\ 1 \end{bmatrix}$$
$$\Rightarrow \text{An eigenvector } \vec{\mathbf{u}}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

Example 3 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -2 & -3 \\ -6 & 1 \end{vmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = -5, \lambda_2 = 4$
- An eigenvector for $\lambda_1 = -5$: $\vec{\mathbf{u}}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- ▶ An eigenvector for $\lambda_2 = 4$, by solving $(A \lambda_2 I)\vec{\mathbf{x}} = 0$:

$$(A - 4I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} -6 & -3 \\ -6 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\Leftrightarrow -6x_1 - 3x_2 = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -1/2 \\ 1 \end{bmatrix}$$
$$\Rightarrow \text{An eigenvector } \vec{\mathbf{u}}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

▶ General solutions are

$$\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix},$$

where C_1, C_2 are free parameters.

Example 3 (b) Solve $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Example 3 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

► General solutions:

$$\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1\\1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1\\2 \end{bmatrix}$$

Example 3 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

► General solutions:

$$\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 1\\2 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} 1\\1 \end{bmatrix} + C_2 \begin{bmatrix} -1\\2 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & -1\\1 & 2 \end{bmatrix} \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 4/3\\1/3 \end{bmatrix}$$

Example 3 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

► General solutions:

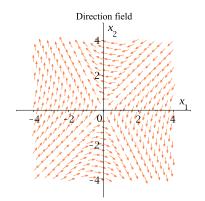
$$\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 1\\2 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} 1\\1 \end{bmatrix} + C_2 \begin{bmatrix} -1\\2 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix}$$

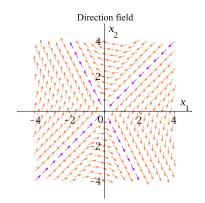
$$\Rightarrow \begin{bmatrix} 1 & -1\\1 & 2 \end{bmatrix} \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 4/3\\1/3 \end{bmatrix}$$

▶ The solution to the initial value problem:

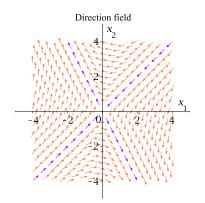

$$\vec{\mathbf{x}}(t) = \frac{4}{3}e^{-5t} \begin{bmatrix} 1\\1 \end{bmatrix} + \frac{1}{3}e^{4t} \begin{bmatrix} -1\\2 \end{bmatrix}$$

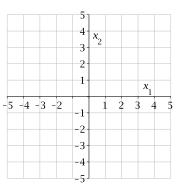
Example 3 (c) Phase portrait of $\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -2 & -3 \\ -6 & 1 \end{vmatrix} \vec{\mathbf{x}}$

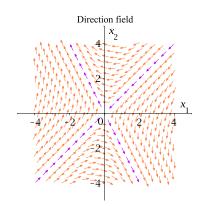
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

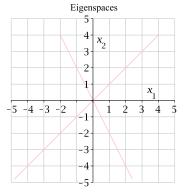

Example 3 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix} \vec{\mathbf{x}}$$

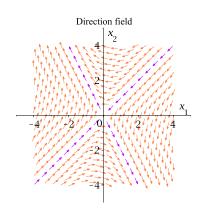
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

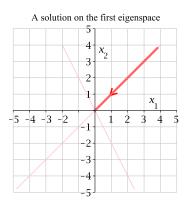

Example 3 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix} \vec{\mathbf{x}}$$

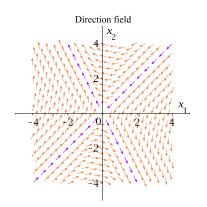

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

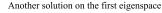

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

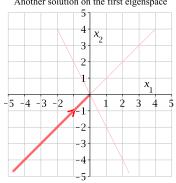

- $C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, along the eigenspace of $\lambda_1 = -5$.
- $C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ leaves away, along the eigenspace of $\lambda_2 = 4$.



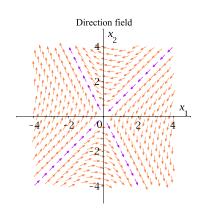

Example 3 (c) Phase portrait of $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix} \vec{\mathbf{x}}$ General solutions: $\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

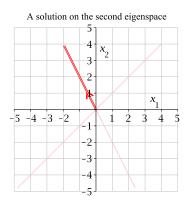

Example 3 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix} \vec{\mathbf{x}}$$
General solutions: $\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

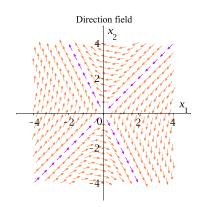


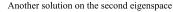


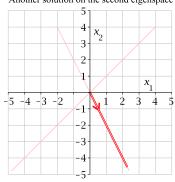
Example 3 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix} \vec{\mathbf{x}}$$
General solutions: $\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$


General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$



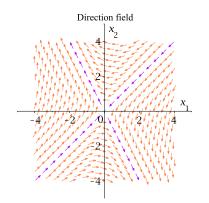

Example 3 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix} \vec{\mathbf{x}}$$
General solutions: $\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

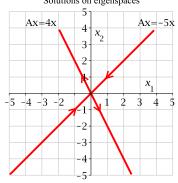




Example 3 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix} \vec{\mathbf{x}}$$
General solutions: $\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

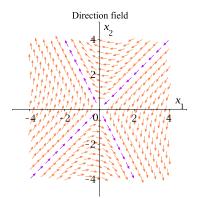
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

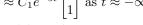


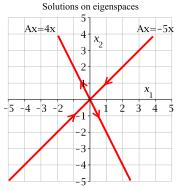


Example 3 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & -3 \\ -6 & 1 \end{bmatrix} \vec{\mathbf{x}}$$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

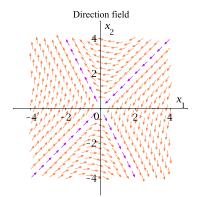



General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

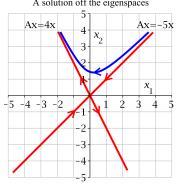

When C_1 and C_2 are both $\neq 0$,

$$\vec{\mathbf{x}}(t) \approx C_2 e^{4t} \begin{bmatrix} -1\\2 \end{bmatrix}$$
 as $t \approx \infty$;

$$\vec{\mathbf{x}}(t) \approx C_2 e^{4t} \begin{bmatrix} -1\\2 \end{bmatrix}$$
 as $t \approx \infty$; $\vec{\mathbf{x}}(t) \approx C_1 e^{-5t} \begin{bmatrix} 1\\1 \end{bmatrix}$ as $t \approx -\infty$.

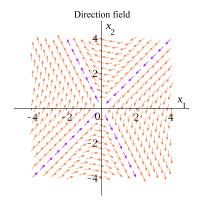


General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

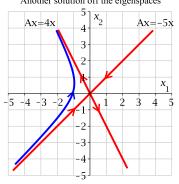

When C_1 and C_2 are both $\neq 0$,

$$\vec{\mathbf{x}}(t) \approx C_2 e^{4t} \begin{bmatrix} -1\\2 \end{bmatrix}$$
 as $t \approx \infty$;

$$\vec{\mathbf{x}}(t) \approx C_2 e^{4t} \begin{bmatrix} -1\\2 \end{bmatrix}$$
 as $t \approx \infty$; $\vec{\mathbf{x}}(t) \approx C_1 e^{-5t} \begin{bmatrix} 1\\1 \end{bmatrix}$ as $t \approx -\infty$.

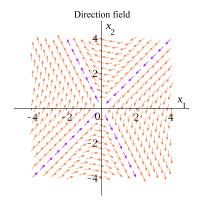

A solution off the eigenspaces

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

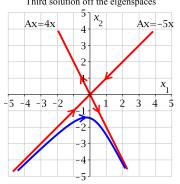

When C_1 and C_2 are both $\neq 0$,

$$\vec{\mathbf{x}}(t) \approx C_2 e^{4t} \begin{bmatrix} -1\\2 \end{bmatrix}$$
 as $t \approx \infty$;

$$\vec{\mathbf{x}}(t) \approx C_2 e^{4t} \begin{bmatrix} -1\\2 \end{bmatrix}$$
 as $t \approx \infty$; $\vec{\mathbf{x}}(t) \approx C_1 e^{-5t} \begin{bmatrix} 1\\1 \end{bmatrix}$ as $t \approx -\infty$.

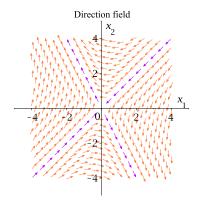

Another solution off the eigenspaces

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

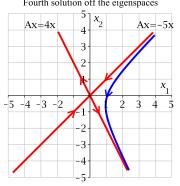

When C_1 and C_2 are both $\neq 0$,

$$\vec{\mathbf{x}}(t) \approx C_2 e^{4t} \begin{bmatrix} -1\\2 \end{bmatrix}$$
 as $t \approx \infty$;

$$\vec{\mathbf{x}}(t) \approx C_2 e^{4t} \begin{bmatrix} -1\\2 \end{bmatrix}$$
 as $t \approx \infty$; $\vec{\mathbf{x}}(t) \approx C_1 e^{-5t} \begin{bmatrix} 1\\1 \end{bmatrix}$ as $t \approx -\infty$.

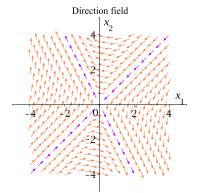

Third solution off the eigenspaces

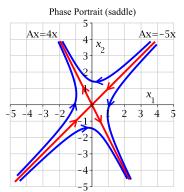
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$


When C_1 and C_2 are both $\neq 0$,

$$\vec{\mathbf{x}}(t) \approx C_2 e^{4t} \begin{bmatrix} -1\\2 \end{bmatrix}$$
 as $t \approx \infty$;

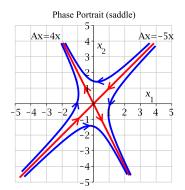
$$\vec{\mathbf{x}}(t) \approx C_2 e^{4t} \begin{bmatrix} -1\\2 \end{bmatrix}$$
 as $t \approx \infty$; $\vec{\mathbf{x}}(t) \approx C_1 e^{-5t} \begin{bmatrix} 1\\1 \end{bmatrix}$ as $t \approx -\infty$.


Fourth solution off the eigenspaces

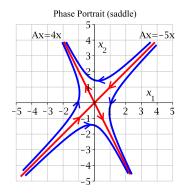

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-5t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

When C_1 and C_2 are both $\neq 0$,

$$\vec{\mathbf{x}}(t) \approx C_2 e^{4t} \begin{bmatrix} -1\\2 \end{bmatrix}$$
 as $t \approx \infty$;



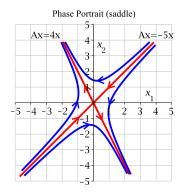
$$\vec{\mathbf{x}}(t) \approx C_2 e^{4t} \begin{bmatrix} -1\\2 \end{bmatrix}$$
 as $t \approx \infty$; $\vec{\mathbf{x}}(t) \approx C_1 e^{-5t} \begin{bmatrix} 1\\1 \end{bmatrix}$ as $t \approx -\infty$.


Example 3 (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} + C_2 e^t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Example 3 (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} + C_2 e^t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$



Most solutions go to space infinity.

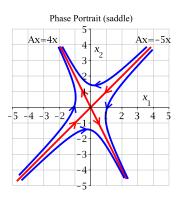
The equilibrium (0,0) is unstable.

Example 3 (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix} + C_2 e^t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Most solutions go to space infinity.

The equilibrium (0,0) is unstable.


We have a *saddle*, when positive & negative eigenvalues co-exist.

Example 3. Why is it called a *saddle*?

Example 3. Why is it called a *saddle*?

