2D Homogeneous Linear Systems with Constant Coefficients: a zero eigenvalue ⇒ a line of equilibria

Xu-Yan Chen

$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

Systems of Diff Eqs:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$
 where $\vec{\mathbf{x}}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, A is a 2×2 real constant matrix

Things to explore:

- ► General solutions
- Initial value problems
- Geometric figures
 - \triangleright Solutions graphs x_1 vs $t \& x_2$ vs t
 - \triangleright Direction fields in the (x_1, x_2) plane
 - Phase portraits in the (x_1, x_2) plane
- Stability/instability of equilibrium $(x_1, x_2) = (0, 0)$

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

What if we have a zero eigenvalue?

Assume that the eigenvalues of A are: $\lambda_1 = 0, \lambda_2 \neq 0$.

Solution Method: (nothing new)

▶ Find an eigenvector $\vec{\mathbf{u}}_1$ for λ_1 , by solving

$$(A - \lambda_1 I)\vec{\mathbf{x}} = 0$$

Find an eigenvector $\vec{\mathbf{u}}_2$ for λ_2 , by solving

$$(A - \lambda_2 I)\vec{\mathbf{x}} = 0.$$

► General solutions are

$$\vec{\mathbf{x}}(t) = C_1 e^{\lambda_1 t} \vec{\mathbf{u}}_1 + C_2 e^{\lambda_2 t} \vec{\mathbf{u}}_2$$

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

What if we have a zero eigenvalue?

Assume that the eigenvalues of A are: $\lambda_1 = 0, \lambda_2 \neq 0$.

Solution Method: (nothing new)

▶ Find an eigenvector $\vec{\mathbf{u}}_1$ for λ_1 , by solving

$$(A - \lambda_1 I)\vec{\mathbf{x}} = 0 \qquad \Rightarrow A\vec{\mathbf{x}} = 0$$

- Find an eigenvector $\vec{\mathbf{u}}_2$ for λ_2 , by solving $(A \lambda_2 I)\vec{\mathbf{x}} = 0$.
- ► General solutions are

$$\vec{\mathbf{x}}(t) = C_1 e^{\lambda_1 t} \vec{\mathbf{u}}_1 + C_2 e^{\lambda_2 t} \vec{\mathbf{u}}_2$$

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

What if we have a zero eigenvalue?

Assume that the eigenvalues of A are: $\lambda_1 = 0, \lambda_2 \neq 0$.

Solution Method: (nothing new)

▶ Find an eigenvector $\vec{\mathbf{u}}_1$ for λ_1 , by solving

$$(A - \lambda_1 I)\vec{\mathbf{x}} = 0 \qquad \Rightarrow A\vec{\mathbf{x}} = 0$$

- Find an eigenvector $\vec{\mathbf{u}}_2$ for λ_2 , by solving $(A \lambda_2 I)\vec{\mathbf{x}} = 0$.
- ► General solutions are

$$\vec{\mathbf{x}}(t) = C_1 e^{\lambda_1 t} \vec{\mathbf{u}}_1 + C_2 e^{\lambda_2 t} \vec{\mathbf{u}}_2 \qquad \Rightarrow \vec{\mathbf{x}}(t) = C_1 \vec{\mathbf{u}}_1 + C_2 e^{\lambda_2 t} \vec{\mathbf{u}}_2$$

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

when the eigenvalues of A are: $\lambda_1 = 0, \lambda_2 \neq 0$.

General solutions: $\vec{\mathbf{x}}(t) = C_1 \vec{\mathbf{u}}_1 + C_2 e^{\lambda_2 t} \vec{\mathbf{u}}_2$

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

when the eigenvalues of A are: $\lambda_1 = 0, \lambda_2 \neq 0$.

General solutions: $\vec{\mathbf{x}}(t) = C_1 \vec{\mathbf{u}}_1 + C_2 e^{\lambda_2 t} \vec{\mathbf{u}}_2$

On the eigenspace of the zero eigenvalue λ_1 , the solutions are time independent; i.e., the eigenspace of the zero eigenvalue is a line of equilibria.

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

when the eigenvalues of A are: $\lambda_1 = 0, \lambda_2 \neq 0$.

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \vec{\mathbf{u}}_1 + C_2 e^{\lambda_2 t} \vec{\mathbf{u}}_2$$

On the eigenspace of the zero eigenvalue λ_1 , the solutions are time independent; i.e., the eigenspace of the zero eigenvalue is a line of equilibria.

$$\lambda_1 = 0, \lambda_2 < 0$$

⇒ Attractive line of equilibria, stable, but not asymptotically stable

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

when the eigenvalues of A are: $\lambda_1 = 0, \lambda_2 \neq 0$.

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \vec{\mathbf{u}}_1 + C_2 e^{\lambda_2 t} \vec{\mathbf{u}}_2$$

On the eigenspace of the zero eigenvalue λ_1 , the solutions are time independent; i.e., the eigenspace of the zero eigenvalue is a line of equilibria.

$$\lambda_1 = 0, \lambda_2 < 0$$

⇒ Attractive line of equilibria, stable, but not asymptotically stable

$$\lambda_1 = 0, \lambda_2 > 0$$

 \Rightarrow Repulsive line of equilibria, unstable

Example 1 (an attractive line of equilibria).

Consider
$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$$
, where $A = \begin{bmatrix} -3 & -6 \\ -1 & -2 \end{bmatrix}$.

- (a) Find general solutions of $\vec{\mathbf{x}}' = \begin{bmatrix} -3 & -6 \\ -1 & -2 \end{bmatrix} \vec{\mathbf{x}}$.
- (b) Solve the initial value problem $\vec{\mathbf{x}}' = \begin{bmatrix} -3 & -6 \\ -1 & -2 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.
- (c) Sketch the phase portrait.
- (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

Example 1 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & -6\\ -1 & -2 \end{bmatrix} \vec{\mathbf{x}}$$

Example 1 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -3 & -6 \\ -1 & -2 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -3 - \lambda & -6 \\ -1 & -2 - \lambda \end{bmatrix} = \lambda^2 + 5\lambda = 0 \implies \lambda_1 = 0, \lambda_2 = -5$$

Example 1 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -3 & -6 \\ -1 & -2 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -3 - \lambda & -6 \\ -1 & -2 - \lambda \end{bmatrix} = \lambda^2 + 5\lambda = 0 \quad \Rightarrow \quad \lambda_1 = 0, \lambda_2 = -5$$

▶ Eigenvectors of A for $\lambda_1 = 0$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$A\vec{\mathbf{x}} = 0 \quad \Leftrightarrow \quad \begin{bmatrix} -3 & -6 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Leftrightarrow \quad \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$\Rightarrow$$
 An eigenvector $\vec{\mathbf{u}}_1 = \begin{bmatrix} -2\\1 \end{bmatrix}$.

Example 1 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -3 & -6 \\ -1 & -2 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -3 - \lambda & -6 \\ -1 & -2 - \lambda \end{bmatrix} = \lambda^2 + 5\lambda = 0 \quad \Rightarrow \quad \lambda_1 = 0, \lambda_2 = -5$$

▶ Eigenvectors of A for $\lambda_1 = 0$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$A\vec{\mathbf{x}} = 0 \quad \Leftrightarrow \quad \begin{bmatrix} -3 & -6 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Leftrightarrow \quad \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

 \Rightarrow An eigenvector $\vec{\mathbf{u}}_1 = \begin{bmatrix} -2\\1 \end{bmatrix}$.

► Eigenvectors of A for $\lambda_2 = -5$, by solving $(A - \lambda_2 I)\vec{\mathbf{x}} = 0$:

$$(A+5I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} 2 & -6 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Leftrightarrow \quad \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\Rightarrow$$
 An eigenvector $\vec{\mathbf{u}}_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$.

Example 1 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -3 & -6 \\ -1 & -2 \end{vmatrix} \vec{\mathbf{x}}$$

ightharpoonup Eigenvalues of A, by solving $\det(A - \lambda I) = 0$:

$$\det \begin{bmatrix} -3 - \lambda & -6 \\ -1 & -2 - \lambda \end{bmatrix} = \lambda^2 + 5\lambda = 0 \implies \lambda_1 = 0, \lambda_2 = -5$$

▶ Eigenvectors of A for $\lambda_1 = 0$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$A\vec{\mathbf{x}} = 0 \quad \Leftrightarrow \quad \begin{bmatrix} -3 & -6 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Leftrightarrow \quad \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
$$\Rightarrow \text{ An eigenvector } \vec{\mathbf{u}}_1 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}.$$

► Eigenvectors of A for $\lambda_2 = -5$, by solving $(A - \lambda_2 I)\vec{\mathbf{x}} = 0$:

$$(A+5I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} 2 & -6 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Leftrightarrow \quad \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\Rightarrow$$
 An eigenvector $\vec{\mathbf{u}}_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$.

• General solutions: $\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} -2\\1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} 3\\1 \end{bmatrix}$

Example 1 (b) Solve $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & -6 \\ -1 & -2 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

Example 1 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & -6 \\ -1 & -2 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} -2\\1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} 3\\1 \end{bmatrix}$$

Example 1 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & -6 \\ -1 & -2 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} -2\\1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} 3\\1 \end{bmatrix}$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} -2 & 3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 7/5 \\ 8/5 \end{bmatrix}$$

Example 1 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & -6 \\ -1 & -2 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} -2\\1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} 3\\1 \end{bmatrix}$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 2\\3 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} -2\\1 \end{bmatrix} + C_2 \begin{bmatrix} 3\\1 \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} -2 & 3\\1 & 1 \end{bmatrix} \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 7/5\\8/5 \end{bmatrix}$$

▶ The solution to the initial value problem:

$$\vec{\mathbf{x}}(t) = \frac{7}{5} \begin{bmatrix} -2\\1 \end{bmatrix} + \frac{8}{5}e^{-5t} \begin{bmatrix} 3\\1 \end{bmatrix}$$

Example 1 (c) Phase portrait of $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & -6 \\ -1 & -2 \end{bmatrix} \vec{\mathbf{x}}$ General solutions: $\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} -2\\1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} 3\\1 \end{bmatrix}$$

Example 1 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & -6 \\ -1 & -2 \end{bmatrix} \vec{\mathbf{x}}$$
General solutions: $\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} -2\\1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} 3\\1 \end{bmatrix}$$

Example 1 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -3 & -6 \\ -1 & -2 \end{vmatrix} \vec{\mathbf{x}}$$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

- $C_1 \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ are eigenvectors of $\lambda_1 = 0$. These are equilibria.
- $C_2 e^{-5t} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ decays to the origin, along the eigenspace of $\lambda_2 = -5$.

Phase Portrait (attractive line of equilibria)

Example 1 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -3 & -6 \\ -1 & -2 \end{bmatrix} \vec{\mathbf{x}}$$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

When
$$C_1$$
 and C_2 are both $\neq 0$: $\lim_{t \to \infty} \vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.

The solution trajectories are lines parallel to the eigenspace of $\lambda_2 = -5$.

Phase Portrait (attractive line of equilibria)

Example 1 (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Phase Portrait (attractive line of equilibria)

Example 1 (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} -2\\1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} 3\\1 \end{bmatrix}$$

Phase Portrait (attractive line of equilibria)

Every equilibrium is stable, but not asymptotically stable.

Example 1 (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} -2\\1 \end{bmatrix} + C_2 e^{-5t} \begin{bmatrix} 3\\1 \end{bmatrix}$$

Phase Portrait (attractive line of equilibria)

Every equilibrium is stable, but not asymptotically stable.

We have an attractive line of equilibria, when $\lambda_1 = 0, \lambda_2 < 0$.

Example 2 (a repulsive line of equilibria).

Consider
$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$$
, where $A = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix}$.

- (a) Find general solutions of $\vec{\mathbf{x}}' = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix} \vec{\mathbf{x}}$.
- (b) Solve the initial value problem $\vec{\mathbf{x}}' = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$
- (c) Sketch the phase portrait.
- (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

Example 2 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix} \vec{\mathbf{x}}$$

Example 2 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix} \vec{\mathbf{x}}$$

$$\det\begin{bmatrix} 2-\lambda & 1\\ 6 & 3-\lambda \end{bmatrix} = \lambda^2 - 5\lambda = 0 \quad \Rightarrow \quad \lambda_1 = 0, \lambda_2 = 5$$

Example 2 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} 2 - \lambda & 1 \\ 6 & 3 - \lambda \end{bmatrix} = \lambda^2 - 5\lambda = 0 \implies \lambda_1 = 0, \lambda_2 = 5$$

► Eigenvectors of A for $\lambda_1 = 0$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$A\vec{\mathbf{x}} = 0 \quad \Leftrightarrow \quad \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Leftrightarrow \quad \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -1/2 \\ 1 \end{bmatrix}$$
$$\Rightarrow \text{ An eigenvector } \vec{\mathbf{u}}_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}.$$

Example 2 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} 2 - \lambda & 1 \\ 6 & 3 - \lambda \end{bmatrix} = \lambda^2 - 5\lambda = 0 \implies \lambda_1 = 0, \lambda_2 = 5$$

▶ Eigenvectors of A for $\lambda_1 = 0$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$A\vec{\mathbf{x}} = 0 \quad \Leftrightarrow \quad \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Leftrightarrow \quad \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -1/2 \\ 1 \end{bmatrix}$$
$$\Rightarrow \text{ An eigenvector } \vec{\mathbf{u}}_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}.$$

► Eigenvectors of A for $\lambda_2 = 5$, by solving $(A - \lambda_2 I)\vec{\mathbf{x}} = 0$:

$$(A - 5I)\vec{\mathbf{x}} = 0 \quad \Leftrightarrow \begin{bmatrix} -3 & 1 \\ 6 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 1/3 \\ 1 \end{bmatrix}$$
$$\Rightarrow \text{An eigenvector } \vec{\mathbf{u}}_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

Example 2 (a) $\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} 2 & 1 \\ 6 & 3 \end{vmatrix} \vec{\mathbf{x}}$

▶ Eigenvalues of A, by solving $det(A - \lambda I) = 0$:

$$\det \begin{bmatrix} 2 - \lambda & 1 \\ 6 & 3 - \lambda \end{bmatrix} = \lambda^2 - 5\lambda = 0 \implies \lambda_1 = 0, \lambda_2 = 5$$

▶ Eigenvectors of A for $\lambda_1 = 0$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$A\vec{\mathbf{x}} = 0 \iff \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -1/2 \\ 1 \end{bmatrix}$$
$$\Rightarrow \text{An eigenvector } \vec{\mathbf{u}}_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}.$$

► Eigenvectors of A for $\lambda_2 = 5$, by solving $(A - \lambda_2 I)\vec{\mathbf{x}} = 0$:

$$(A - 5I)\vec{\mathbf{x}} = 0 \quad \Leftrightarrow \begin{bmatrix} -3 & 1 \\ 6 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 1/3 \\ 1 \end{bmatrix}$$

$$\Rightarrow$$
 An eigenvector $\vec{\mathbf{u}}_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + C_2 e^{5t} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Example 2 (b) Solve $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

Example 2 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + C_2 e^{5t} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Example 2 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + C_2 e^{5t} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + C_2 \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 3/5 \\ 7/5 \end{bmatrix}$$

Example 2 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + C_2 e^{5t} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 2\\3 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} 1\\-2 \end{bmatrix} + C_2 \begin{bmatrix} 1\\3 \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 1\\-2 & 3 \end{bmatrix} \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 3/5\\7/5 \end{bmatrix}$$

▶ The solution to the initial value problem:

$$\vec{\mathbf{x}}(t) = \frac{3}{5} \begin{bmatrix} 1 \\ -2 \end{bmatrix} + \frac{7}{5} e^{5t} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Example 2 (c) Phase portrait of $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix} \vec{\mathbf{x}}$ General solutions: $\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + C_2 e^{5t} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + C_2 e^{5t} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

Example 2 (c) Phase portrait of $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix} \vec{\mathbf{x}}$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + C_2 e^{5t} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Direction Field (repulsive line)

Example 2 (c) Phase portrait of $\frac{d\vec{x}}{dt} = \begin{vmatrix} 2 & 1 \\ 6 & 3 \end{vmatrix} \vec{x}$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + C_2 e^{5t} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

- $C_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ are eigenvectors of $\lambda_1 = 0$. These are equilibria.
- $C_2 e^{5t} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ grows, along the eigenspace of $\lambda_2 = 5$.

Example 2 (c) Phase portrait of $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix} \vec{\mathbf{x}}$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + C_2 e^{5t} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

When $C_1 \neq 0$ and $C_2 \neq 0$: All these solutions grow to infinity.

The trajectories are lines parallel to the eigenspace of $\lambda_2 = 5$.

Example 2 (d) Are the equilibria stable, asymptotically stable, or unstable?

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + C_2 e^{5t} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Phase Portrait (repulsive line of equilibria)

Example 2 (d) Are the equilibria stable, asymptotically stable, or unstable?

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + C_2 e^{5t} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Phase Portrait (repulsive line of equilibria)

Every equilibrium is unstable.

Example 2 (d) Are the equilibria stable, asymptotically stable, or unstable?

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + C_2 e^{5t} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Phase Portrait (repulsive line of equilibria)

Every equilibrium is unstable.

We have a repulsive line of equilibria, when $\lambda_1 = 0, \lambda_2 > 0$.