2D Homogeneous Linear Systems with
Constant Coefficients
— repeated eigenvalues

Xu-Yan Chen



Systems of Diff Eqgs: CCZZ_); = AX

$1(t)

where %(t) = [m o

} , Ais a 2 x 2 real constant matrix

Things to explore:
» General solutions
» Initial value problems
» Geometric figures

» Solutions graphs x; vs t & xg vs't
» Direction fields in the (x1,x2) plane
» Phase portraits in the (z1,x3) plane

> Stability /instability of equilibrium (z1, 22) = (0,0)
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Assume that the eigenvalues of A are: A\ = \o.
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e Easy Cases: A = [)E)l )(\)},
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e Hard Cases: A # R)l ;\)}, but A\ = \a.
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Find Solutions in the Easy Cases: A = \[

> All vector X € R? satisfy (A4 — A\ I)X = 0.
The eigenspace of Ay is the entire plane.

We can pick u; = [(ﬂ ,Up = [ﬂ as linearly indep eigenvectors.
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What if A has repeated eigenvalues?
Assume that the eigenvalues of A are: A\ = \o.

e Easy Cases: A = [)E)l )(\)},
1

e Hard Cases: A # R)l ;\)}, but A\ = \a.
1

Find Solutions in the Easy Cases: A = \[

> All vector X € R? satisfy (A4 — A\ I)X = 0.
The eigenspace of Ay is the entire plane.

We can pick u; = [(ﬂ ,Up = [ﬂ as linearly indep eigenvectors.

» General solutions are %(t) = Cie M) + Coethiiy

= X(t) = CleAlt |:(1):| + CgeAlt |:(1):|
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What if A has repeated eigenvalues?
Assume that the eigenvalues of A are: A\ = \o.

e Easy Cases: A = [)E)l )(\)],
1

e Hard Cases: A # R)l ;\)}, but A\; = \a.
1

Find Solutions in the Easy Cases: A = \[

> All vector X € R? satisfy (A4 — A\ I)X = 0.
The eigenspace of Ay is the entire plane.

We can pick u; = [(ﬂ ,Up = [ﬂ as linearly indep eigenvectors.

» General solutions are %(t) = Cie M) + Coethiiy

= R(t) = CreMt H + CpeMit m = %(t) = Mt [C‘}

C
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Find Solutions in the Hard Cases: \; = )\, but A £ M\ [

» Find an eigenvector u for Aq, by solving
(A=XMDX=0.
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Find Solutions in the Hard Cases: \; = )\, but A £ M\ [

» Find an eigenvector u for Aq, by solving
(A— MI)E = 0.
Since A # A11, we can only pick one linearly indep eigenvector u.
This gives partial solutions: ®(t) = Ce .

Need more to get complete solution formula.
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» Find an eigenvector u for Aq, by solving
(A— MI)E = 0.
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Need more to get complete solution formula.

» Find a generalized eigenvector v by solving
(A-MDHX =1
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Find Solutions in the Hard Cases: \; = )\, but A £ M\ [

» Find an eigenvector u for Aq, by solving
(A— MI)E = 0.
Since A # A11, we can only pick one linearly indep eigenvector u.
This gives partial solutions: ®(t) = Ce .
Need more to get complete solution formula.
» Find a generalized eigenvector v by solving
(A— M = i
Solutions of (A — A\ I)X = 4 satisfy (A4 — A\ 1)?°% = (A — )i = 0.

Nonzero solutions of (A — A\1T)2X = 0 are called generalized eigenvectors.
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Find Solutions in the Hard Cases: \; = )\, but A £ M\ [

» Find an eigenvector u for Aq, by solving
(A— MI)E = 0.
Since A # A11, we can only pick one linearly indep eigenvector u.
This gives partial solutions: ®(t) = Ce .
Need more to get complete solution formula.
» Find a generalized eigenvector v by solving
(A— M = i
Solutions of (A — A\ I)X = 4 satisfy (A4 — A\ 1)?°% = (A — )i = 0.

Nonzero solutions of (A — A\1T)2X = 0 are called generalized eigenvectors.

» General solutions are %(t) = Cr e + Coe Mt (V + ti)
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2D Systems X' = AX: phase portraits & stability

)\1:)\2<0,A7é)\111
Attractive degenerate node,
asymtotically stable

)\12)\2>07A=)\1[:
Repulsive proper node,
unstable

Prase Porat (el poper o)

A1 = Ao >0,A75)\1]:
Repulsive degenerate node,
unstable e S ,

)\1:)\2:O,A:02
Every point is a stable equilib-
rium, but not asymp stable

AM=X=0,4#0:
Laminated flow,
unstable




Example 1. (Attractive Proper node)

Consider X' = AX, where A = [_02 _02] )

(a) Find general solutions of X' = {_2 0 ] X.

(b) Solve the initial value problem X' = [_2 0 } X, %(0) = E]

(c) Sketch the phase portrait.

(d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?
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(a) Find general solutions.
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(a) Find general solutions.

» Eigenvalues of A are A\ = Ay = —2.
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(a) Find general solutions.
» Eigenvalues of A are A\ = Ay = —2.
> (A-MDNX=0&0X=0: All X € R? are eigenvectors.

» General solutions are

%(t) = Cre~2t B] + Che™ 2t {(1)] & Xt)=e? [02]
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(a) Find general solutions.
» Eigenvalues of A are A\ = Ay = —2.
> (A-MDNX=0&0X=0: All X € R? are eigenvectors.

» General solutions are

X(t) = Cre H + Cope™2 H o R(t) =2 [Cl]

dx -2 0
dt

(b) Solve > = |7 _2} %, %(0) = E]



Example 1. dx = {_2 Y ] X
dt 0 -2
(a) Find general solutions.
» Eigenvalues of A are A\ = Ay = —2.
> (A-MDNX=0&0X=0: All X € R? are eigenvectors.

» General solutions are

X(t) —-cath{é] +-6562t{2] ) __th[ca]

dt

» Use the initial condition:

=[]~ [a] =[]

(MMWﬁZW-ﬁimFH'



Example 1. dx = {_2 Y ] X
dt 0 -2
(a) Find general solutions.
» Eigenvalues of A are A\ = Ay = —2.
> (A-MDNX=0&0X=0: All X € R? are eigenvectors.

» General solutions are

X(t) —-cath{é] +-6562t{2] ) __th[ca]

dt

» Use the initial condition:
S |2 Ci| |2
0= 3] = c:] - [}

» The solution to the initial value problem:

f@)e%{ﬂ

(MMWﬁZW-ﬁimFH'
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General solutions: ~ X(t) = e~ {

Gy
C
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All solutions decay to 0 in the same exponential rate A\; = —2.
The trajectories are lines converging to the origin.

General solutions: ~ X(t) = e~ {

Phase Portrait (attractive proper node)
395
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The equilibrium (0, 0) is
asymptotically stable.
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Example 1 (c) Phase portrait of d_)t( = 02 _02 X

‘)

General solutions: ~ X(t) = e~ {
&

All solutions decay to 0 in the same exponential rate A\; = —2.
The trajectories are lines converging to the origin.

Phase Portrait (attractive proper node)
395

(d) Stability?

The equilibrium (0, 0) is
asymptotically stable.

We have an
attractive proper node,
when A = A1 and A\ < 0.




Example 2. (Repulsive proper node)

% = AR, where A — E’) g} .

X.

3 0]
0 3

(a) Find general solutions of X' = [

(b) Solve the initial value problem X' = [g g] X, X(0) = [;}

(c) Sketch the phase portrait.

(d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?
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(a) Find general solutions.
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(a) Find general solutions.

General solutions are  X(t) = e3¢ [gl]
2
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(a) Find general solutions.

General solutions are  X(t) = e3¢ [gl]
2

(b) Solve %’f - [g g] %, %(0) = [ﬂ
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Example 2. pi {0 3] X

(a) Find general solutions.

General solutions are  X(t) = e3¢ [gl]
2

(b) Solve %’f - [g g] %, %(0) = [ﬂ

The solution to the initial value problem:  X(t) = €% E}
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General solutions:  X(t) = 3 {
Cs
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All solutions grow in the same exponential rate A\; = 3.
The trajectories are lines emanating from the origin.

General solutions:  X(t) = 3 {

Phase Portrait (repulsive proper node)
395
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Cs

All solutions grow in the same exponential rate A\; = 3.
The trajectories are lines emanating from the origin.

General solutions:  X(t) = 3 {

Phase Portrait (repulsive proper node)
395

(d) Stability?

The equilibrium (0, 0) is
unstable.
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Example 2 (c) Phase portrait of = o 3

‘)

General solutions:  X(t) = 3 {
&

All solutions grow in the same exponential rate A\; = 3.
The trajectories are lines emanating from the origin.

Phase Portrait (repulsive proper node)
395

(d) Stability?

The equilibrium (0, 0) is
unstable.

We have a
repulsive proper node,
when A = A1 and A\; > 0.




Example 3. (attractive degenerate node)

Consider %' = A%, where A = [:; ﬂ .

(a) Find general solutions of X’ = {:; 8} R

—_

(b) Solve the initial value problem X' = [_; ﬂ X, X(0) = [;}

(c) Sketch the phase portrait.

(d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?



Example 3 (a) X' = {_



Example 3 (a) X' = {:7 8] X

> Eigenvalues of A, by solving det(4 — AI) = 0:
—-7—A 8

det{ 9 Y

:|>\2+6/\+90 =AM =X =-3



Example 3 (a) X' = {:7 8] X

> Eigenvalues of A, by solving det(4 — AI) = 0:
—-7—A 8
-2 1—A

» Eigenvectors of A for \y = Ay = —3, by solving (A — A [)X =0:

avane-os [ 1] -] <[] =[]

det|: :|>\2+6/\+90 =AM =X =-3



Example 3 (a) X' = {:7 8] X

> Eigenvalues of A, by solving det(4 — AI) = 0:
—-7—A 8

det{ 9 Y

:|>\2+6/\+90 =AM =X =-3

» Eigenvectors of A for A\; = Ay = —3, by solving (A — A\ )X =0:
> —4 8 T1| 0 1| _ 2
wvavsenn 3 ][]+
e Can only pick one linear indep eigenvector u = [ﬂ .
2

1
e Need more to get complete solution formula.

e Partial solutions: X(t) = Ce3!
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> Figenvalues of A: A\ = Ao = -3

—

» An eigenvector for A\ = Ao = —3: U =
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Example 3 (a) d_)tc = [_; 213] X

> Figenvalues of A: A\ = Ao = -3
» An eigenvector for Ay = Ay = —3: U = E]

» Find a generalized eigenvector, by solving (A — \I)X = u:
o = —4 8 X1 o 2
(A4 3D)% = ies [2 4] [u] _ H

_1
= — 2331 + 4$2 = 1@}@‘1 = _% + 2$2¢> |:1'1:| _ |: 3 + 2132:|
T2 T2
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Example 3 (a) d_)tc = [_; 213] X

> Figenvalues of A: A\ = Ao = -3
» An eigenvector for Ay = Ay = —3: U = E]

» Find a generalized eigenvector, by solving (A — \I)X = u:
o = —4 8 X1 o 2
(A4 3D)% = ies [2 4] [u] _ H

_1
& — 21 +4r9 = 121 = —% + 209 |;il:| = |: 2 + 22
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> Figenvalues of A: A\ = Ao = -3

» An eigenvector for Ay = Ay = —3: U = E]

» Find a generalized eigenvector, by solving (A — \I)X = u:
o = —4 8 X1 o 2
(A4 3D)% = ies [2 4] [u] _ H

_1
= — 2331 + 4@'2 = 1@}@‘1 = _% + 2$2¢> |:1'1:| _ |: 3 + 2132:|
T2 T2

_1
= A generalized eigenvector Vv = [ 02} .

» General solutions are  X(t) = C1e*ti + Coe’t(V + ti),
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Example 3 (a) d_)tc = [_; 213] X

> Figenvalues of A: A\ = Ao = -3

» An eigenvector for Ay = Ay = —3: U = E]

» Find a generalized eigenvector, by solving (A — \I)X = u:
o = —4 8 X1 o 2
(A4 3D)% = ies [2 4] [u] _ H

_1
= — 2331 + 4@'2 = 1@}@‘1 = _% + 2$2¢> |:1'1:| _ |: 3 + 2132:|
T2 T2

_1
= A generalized eigenvector Vv = [ 02} .

» General solutions are  X(t) = C1e*ti + Coe’t(V + ti),

(1) = Che3 m + Cae™™ ([_ﬂ + ED
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Example 3 (b) Solve — = :

» General solutions:

dx

dt



Example 3 (b) Solve = _ [:7 8]

» General solutions:

X(t) = Cre 3t [

2
1

dt

e (] +]

» Use the initial condition:

%(0) = E] =G m O {—0;] N E]

2 -1l ¢
-0l

1



a2 (-7 8. -, [2
Example 3 (b) Solve i [_2 1] X, X(0) = [ ]

» General solutions:

e ] ([ o)

» Use the initial condition:

%(0) = E] =G m O {—0;] N E]

=[]l el - R

» The solution to the initial value problem:

o o (3] ) - 2
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Example 3 (c) Phase portrait of — = ; ] X
2
1

General solutions:  X(t) = Cre=3¢ E] + Coe™3t 2 -|-

Direction Field
4,

2
L
v
1 [
is
Pre
e *
ENEE i i Sl T2 374
2" -1




-7
Example 3 (c) Phase portrait of — =,
. S 3¢ |2 _ 2
General solutions:  X(t) = Cqe 1+ Coe™3 —|—
— 0 2(+) — 3¢ |2 o
e When Cy =0, X(t) = Che 1 decays to the origin,
along the eigenspace of A\; = Ay = —3.
Direction Field Solutions on the eigenspace
1 % 34 ’
N
23 v "] Ax=-3x
1 (" 1 X X
(?
SRRy ! *l
473 —za—),”o T2 374 5 5 1 2 3
)) - -1
N
2" 2
]
3
3]
e

"l



Example 3 (c) Phase portrait of — =

RX(t) = Cre 3t m + Che™3t

General solutions:

e When Cy # 0, X(t) ~ Cote 3t [ﬂ for t ~ co

decaying to the origin along the eigenspace of A\ = Ay

Direction Field
4,

1

—7
—2
2 _|_ 2

—3.

Phase Portrait (attractive degenerate node)

X2

Ax=-3x

"l
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Example 3 (c) Phase portrait of d_)t( = _; ? X

_1
General solutions:  X(t) = Cre=3¢ E] + Coe™3t ([ 02} +t E])

e When Cy # 0, X(t) ~ Cate™3t [ﬂ is very small, for ¢ ~ oo;

Direction Field Phase Portrait (attractive degenerate node)
p X

3]

2] e Ax=-3x




Example 3 (c) Phase portrait of

General solutions:  X(t) = Cre=3¢ E] + Coe™3t ([

—

dx
dt

—7 8
-2 1

J-[7])

1
2
0

e When Cy # 0, X(t) ~ Cate™3t [ﬂ is very small, for ¢ ~ oo;

R(t) ~ Cote3t {2

Direction Field
4,

3]

1

] is very large, for ¢t ~ —o0.

Phase Portrait (attractive degenerate node)
R

Ax=-3x




Example 3 (c) Phase portrait of Ccil_)f = [:g ﬂ X
General solutions: ~ X(t) = Cre™ m + Coe™3t ([_ﬂ +1t ED

e When Cy # 0, X(t) ~ Cate™3t [ﬂ is very small, for ¢ ~ oo;

. 2] .
R(t) = Cote™3! L] is very large, for ¢ &~ —oco.

Phase Portrait (attractive degenerate node)
R

(d) Stability or instability? &

Ax=-3x




Example 3 (c) Phase portrait of Ccil_)f = [:g ﬂ X
General solutions: ~ X(t) = Cre™ m + Coe™3t ([_ﬂ +1t ED

e When Cy # 0, X(t) ~ Cate™3t [ﬂ is very small, for ¢ ~ oo;

. 2] .
R(t) = Cote™3! L] is very large, for ¢ &~ —oco.

Phase Portrait (attractive degenerate node)
R

(d) Stability or instability? &

Ax=-3x

The equilibrium (0, 0) is
asymptotically stable.
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Example 3 (c) Phase portrait of d_)t( = [_g ﬂ X

_1
General solutions:  X(t) = Cre=3¢ E] + Coe™3t ([ 02} +t E])
e When Cy # 0, X(t) ~ Cate™3t [ﬂ is very small, for ¢ ~ oo;
2 —at 2]
X(t) = Cate L] is very large, for ¢ &~ —oco.

Phase Portrait (attractive degenerate node)
R

(d) Stability or instability? 1 Ae - 3x

The equilibrium (0, 0) is
asymptotically stable.

We have an attractive degenerate node,
when A\; = A2 < 0, but A # A\ [ 2




Example 4. (repulsive degenerate node)

Consider ¥ = AR, where A — [411 _51] .

%l

(a) Find general solutions of X' = Lll _51}

(b) Solve the initial value problem X' = [i _51] X, X(0) = [;}

(c) Sketch the phase portrait.

(d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?
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Example 4 (a) X' = Lll _51] X

> Eigenvalues of A, by solving det(4 — AI) = 0:
1-x -1

det{ 4 5\

:|)\26>\+90 =AM =X=3



Example 4 (a) X' = Lll _51] X

> Eigenvalues of A, by solving det(4 — AI) = 0:
1-x -1
4 5—A

» Eigenvectors of A for \y = Ay = 3, by solving (A — A\ )X =0:

e antaed P ) R I

det{ })\26>\+90 >AM=X=3



Example 4 (a) X' = Lll _51] X

> Eigenvalues of A, by solving det(4 — AI) = 0:
1-x -1
4 5—A

» Eigenvectors of A for \y = Ay = 3, by solving (A — A\ )X =0:

(A-3N%=0¢ [_42 _ﬂ H = [8} < [i] - M

1
e Can only pick one linear indep eigenvector U = [ 1 } .

det{ })\26>\+90 >AM=X=3

_1
e Partial solutions: %(t) = Ce® Cl

e Need more to get complete solution formula.



Example 4 (a) dt [411 _51] X

» Eigenvalues of A: Ay =Xy =3

_1
» An eigenvector for \y = \o = 3: U = { 12]



Example 4 (a) dt [411 _51] X

» Eigenvalues of A: Ay =Xy =3

» An eigenvector for \y = \o = 3: U = {;]

» Find a generalized eigenvector, by solving (A — A\ I)X = u:
(A—3D)% = e [_42 ‘21} Ej _ [—ﬂ

X l—ll‘g
<:>—2$1—$2=—§<:>$1=%—%$2<:> = |4 2



Example 4 (a) dt [411 _51] X

» Eigenvalues of A: Ay =Xy =3

_1
» An eigenvector for \y = \o = 3: U = { 2]

» Find a generalized eigenvector, by solving (A — A1 1)X

o = [-2 =1 =] _ -3
(A—SI)x_uc>[4 QH:CJ_M
_ 1 _1 1 T _ %
<:>—2$1—$2——§<:>$1—Z—§$2<:> Lo =

1
= A generalized eigenvector v = [6] .

=u:



Example 4 (a) dt [411 _51] X

» Eigenvalues of A: Ay =Xy =3
_1
» An eigenvector for \y = \o = 3: U = { 2]
» Find a generalized eigenvector, by solving (A — A\ I)X = u:
o = [-2 =1 =] _ -3
(A—3])x-u<:>[4 2} H - [ ; }
__1 _1_1 Ty i - %xz
<:>—2$1—$2——§<:>$1—Z—§$2<:> Lo = 2o

1
= A generalized eigenvector v = [6] .

» General solutions are  X(t) = Cre*ti + Coe’t(V + tid),



Example 4 (a) dt [411 _51] X

» Eigenvalues of A: Ay =Xy =3
_1
» An eigenvector for \y = \o = 3: U = { 2]
» Find a generalized eigenvector, by solving (A — A\ I)X = u:
o = [-2 =1 =] _ -3
(A—3])x-u<:>[4 2} H - [ ; }
__1 _1_1 Ty i - %xz
<:>—2$1—$2——§<:>$1—Z—§$2<:> Lo = 2o

1
= A generalized eigenvector v = [6] .

» General solutions are  X(t) = Cre*ti + Coe’t(V + tid),

<o -cun ] o (i [ ]
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Example 4 (b) Solve i [4 . ] X, X(0) = [3]



= 1 -1]. .. [2
Example 4 (b) Solve i [4 . ] X, X(0) = [3]

» General solutions:

o {] e (] [2])
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Example 4 (b) Solve d_>t<

» General solutions:

> Use

_1 17
f(t) = Clegt |: 12:| + 0263t ([6-

the initial condition:

-l
% 1

17
4
e {0_

i 3]x so- |

2
3

|



Example 4 (b) Solve Cfl_)t( = [1 _1] X, X(0) = [

» General solutions:

o {] e (] [2])

» Use the initial condition:

2 -1 1112
200) = 2 1
o=l =a[y]eefi] -]

101 1

—s 2| |C4 2 Ch 3

2 1 - _

-3l - Bl - [a) -
» The solution to the initial value problem:

X(t) = 3¢ [_ﬂ + 14e* ([(13] ti [_FD = e¥ {32; 11}
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_1 1
General solutions:  X(t) = C1e® [ 12] + Coet ({4



Example 4 (c) Phase portrait of

X %
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dx 1 -1
Example 4 (c) Phase portrait of — =
dt 4 5
_1 1 _1
General solutions:  X(t) = C1e® [ 12] + Coet ({6} +t f})
_1
e When Cy = 0, X(t) = C1e3! [ 12} leaves the origin,
along the eigenspace of Ay = Ay = 3.
Direction Field Solutions on the eigenspace
L ¢ 4 67 %2
X ]
\‘ 31 ]
K. 2
X 2
AL
\ Xy X
4RI TATON T RT3 a 6 -4 2 O\ 2 4 s
JENS ¢
\ -2
2 v
3% J
3 Y -
Ay )
L4 A 64 Ax=3x

%l



Example 4 (c) Phase portrait of — =
General solutions:  X(t) = C1e® [_12] + Coet ({ }

e When (s 7é O,

X(t) ~ Cyte® [

%(t) =~ Cyte® [

Direction Field
44

%

N[

—

dx

1
dt 4

1
2} is very large, for t = oo;

} is very small, for ¢t =~ —o0.

Phase Portrait (repulsive degenerate node)
6%
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Example 4 (c) Phase portrait of Cfi—); = 411 _5 ]
General solutions: ~ X(t) = C1e* [_12] + Cae” ({ } ;D

e When Cy # 0, X(t) ~ Cote3 [ ]

1
2} is very large, for t = oo;

1

N[

%(t) =~ Cyte® [ } is very small, for t ~ —oo.

Phase Portrait (repulsive degenerate node)
6%

(d) Stability or instability?
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Example 4 (c) Phase portrait of d_)t( =1y ]

5)
1 _1
General solutions:  X(t) = Cie* [ 12] + Cae™ ({ } 2})

e When Cy # 0, X(t) ~ Cote3 [ ]

1
2} is very large, for t = oo;

1

N[

%(t) =~ Cyte® [ } is very small, for t ~ —oo.

Phase Portrait (repulsive degenerate node)
6%

(d) Stability or instability?

The equilibrium (0, 0) is
unstable.
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Example 4 (c) Phase portrait of Cfi—); = 411 _5 ]
General solutions: ~ X(t) = C1e* [_12] + Cae” ({ } ;D

_1
e When Cy # 0, X(t) ~ Cote3 [ 12} is very large, for ¢ ~ oo;

%(t) =~ Cyte® [ X } is very small, for t ~ —oo.

N[

Phase Portrait (repulsive degenerate node)
6%

(d) Stability or instability?

The equilibrium (0, 0) is
unstable.

We have a repulsive degenerate node,
when A\; = Ay > 0, but A # A\ 1.




Example 5. (laminated flow)

-6 4
-9 6

Consider X' = AX, where A = [

—_

(a) Find general solutions of X' = {:g 461 X.

(b) Solve the initial value problem X' = [_g g] X, X(0) = [2}

(c) Sketch the phase portrait.

(d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?
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Example 5 (a) X' = {:6 4] X

» Eigenvalues of A, by solving det(A — AI) = 0:
—6—A 4

det[ 9 6\

:|:>\2:0 =AM =X=0



Example 5 (a) X' = {:6 4] X

» Eigenvalues of A, by solving det(A — AI) = 0:
—6—A 4
-9 6— A

> Eigenvectors of A for \; = Ay =0, by solving (A — M\ 1)X = 0:

0w [ J[]-F] <[] -=[

det[ :|:>\2:0 =AM =X=0



Example 5 (a) X' = {:6 4] X

» Eigenvalues of A, by solving det(A — AI) = 0:
—6—A 4
-9 6— A

> Eigenvectors of A for \; = Ay =0, by solving (A — M\ 1)X = 0:
S —6 4| [z1| _ |0 T1| _ 2
aemoe [ o[- <)==l

e Can only pick one linear indep eigenvector u = [ } .

det[ :|:>\2:0 =AM =X=0

—wl

— Wi

2
e Equilibrium solutions: X(t) = C 515 .

e Need more to get complete solution formula.
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Example 5 (a) d_)tc = [_g g] X

» Eigenvalues of A: Ay =X =0

2
» An eigenvector for \y = Ao = 0: U = {ﬂ
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Example 5 (a) d_)tc = [_g é] X

» Eigenvalues of A: Ay =X =0
2
» An eigenvector for \y = Ao = 0: U = {ﬂ

» Find a generalized eigenvector, by solving (A — A\ I)X = u:

AR =i {:g ﬂ Bj - m

1,2
<:>_6./L'1+4,’L‘2:g@xlz_é_;'_gmz@[xl]:|: 9+3

€2
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Example 5 (a) d_)tc = [_g é] X

» Eigenvalues of A: Ay =X =0

2
» An eigenvector for \y = Ao = 0: U = {ﬂ

» Find a generalized eigenvector, by solving (A — A\ I)X = u:

AR =i {:g ﬂ Bj - m

<:>—6.”L'1+4$2:%<$:E1:—
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Example 5 (a) d_)tc = [_g é] X

» Eigenvalues of A: Ay =X =0
2
» An eigenvector for \y = Ao = 0: U = {ﬂ

» Find a generalized eigenvector, by solving (A — A\ I)X = u:
> o —6 4 T . %
we=as [ ) [2)-

1,2
T -5t 32
@—6951—1—4952:3@;51:_91)4_53;2@[1]:{ 9 32}
€2

_1
= A generalized eigenvector v = [ 09} .

» General solutions are  X(t) = Cre*ti + Coe’t(V + tid),



-9 6

» Eigenvalues of A: Ay =X =0

Example 5 (a) CZZ—X = [_6 4] X

3

1

2
» An eigenvector for \y = Ao = 0: U = { }

» Find a generalized eigenvector, by solving (A — A1)

AR =i {:g ﬂ Bj - m

— 6x1 + 4x9 = %@,’El —§ + $2<:> |:$1:|

= A generalized eigenvector v = {_

—»

» General solutions are  X(¢

wo-ali <o ()

1
9
’)

= CreMtd + CoeM(V + tid),

€2



Example 5 (b) Solve

dx

dt
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Example 5 (b) Solve d_>t< — [_

» General solutions:

=i e ([f] [
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Example 5 (b) Solve d_>t< = [_6 4] :

» General solutions:

o= i . ([f] [

» Use the initial condition:

o - ][]
2 _11[¢, )
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Example 5 (b) Solve d_>t< = [_

» General solutions:

o= i . ([f] [

» Use the initial condition:

o - -] -

=1 dlfe) =[] = 1=

» The solution to the initial value problem:

2(t) =3 E] _ E} (an equilibrium)



—

d
Example 5 (c) Phase portrait of d_)t( =

General solutions:

wo-[f[-e([ [
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—6 4
-9 6

|

dt

dx

Example 5 (c) Phase portrait of

General solutions:

Direction Field
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Example 5 (c) Phase portrait of 7= |_9 6

General solutions:
2 _1 2
X(t)=C H + Cs ([ 09} +t H)

e When 02 =0: i(t) = Cl |:

— Wl

} are equilibria, lining along the eigenspace.

Direction Field Solutions on the eigenspace
Z, % (:7 * Ax=0
A 44
34 3
24 5]
19 o
X X

-6',-5,-4 73 72 Y, 2,43 /4/5/6 -6 -5 -4 -3 -2 1 2 3 4 5 6

[ A TN
- TR O
- S NSO O



dx —
Example 5 (c) Phase portrait of g { g 4]

dt

General solutions:

ol es (3] o[~ (@ [ s [ el

0
2
e When C5 # 0: X(t) are linear functions, with X(0) = C4 [ﬂ + Cs [

d 2
velocity dit( = Cy [%] is parallel to the eigenspace.

Direction Field Phase Portrait (laminar flow)
- A%

%

=N kT g

-6',-5,-4 73 72 Y, 2,43 /4/5/6

N R RN
QRO R W N




dx —
Example 5 (c) Phase portrait of d_)t( = [ g g] X

General solutions:

wo-afee ([ )= (off] o [ el

0
2 _1
e When C5 # 0: X(t) are linear functions, with X(0) = C4 [ﬂ + Cs [ 09];

—

d 2
velocity dit( = Cy [%] is parallel to the eigenspace.

Phase Portrait (laminar flow)
6%

(d) Is the equilibrium (0,0)
stable, asymptotically stable,
or unstable?




Example 5 (c) Phase portrait of o

General solutions:

% _ [-6 4
-9 6

ol es (3] o[~ (@ [ s [ el

0
2
e When C5 # 0: X(t) are linear functions, with X(0) = C4 [ﬂ + Cs [

—

d 2
velocity dit( = Cy [%] is parallel to the eigenspace.

Phase Portrait (laminar flow)
6%

(d) Is the equilibrium (0,0)
stable, asymptotically stable,
or unstable?

The equilibrium (0, 0) is
unstable.




Example 5 (c) Phase portrait of o

General solutions:

% _ [-6 4
-9 6

wo-afee ([ )= (off] o [ el

0
2
e When C5 # 0: X(t) are linear functions, with X(0) = C4 [ﬂ + Cs [

—

d 2
velocity dit( = Cy [%] is parallel to the eigenspace.

Phase Portrait (laminar flow)
6%

(d) Is the equilibrium (0,0)
stable, asymptotically stable,
or unstable?

The equilibrium (0, 0) is
unstable.

We have a laminar flow,
when /\1 = /\2 = 0, but A 7é 0.




