2D Homogeneous Linear Systems with Constant Coefficients

— repeated eigenvalues

Xu-Yan Chen

$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

Systems of Diff Eqs:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$
 where $\vec{\mathbf{x}}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, A is a 2×2 real constant matrix

Things to explore:

- ► General solutions
- Initial value problems
- Geometric figures
 - \triangleright Solutions graphs x_1 vs $t \& x_2$ vs t
 - \triangleright Direction fields in the (x_1, x_2) plane
 - Phase portraits in the (x_1, x_2) plane
- Stability/instability of equilibrium $(x_1, x_2) = (0, 0)$

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

Assume that the eigenvalues of A are: $\lambda_1 = \lambda_2$.

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

Assume that the eigenvalues of A are: $\lambda_1 = \lambda_2$.

• Easy Cases:
$$A = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{bmatrix}$$
;

• Easy Cases:
$$A = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{bmatrix}$$
;
• Hard Cases: $A \neq \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{bmatrix}$, but $\lambda_1 = \lambda_2$.

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

Assume that the eigenvalues of A are: $\lambda_1 = \lambda_2$.

• Easy Cases:
$$A = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{bmatrix}$$
;

• Hard Cases: $A \neq \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{bmatrix}$, but $\lambda_1 = \lambda_2$.

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

Assume that the eigenvalues of A are: $\lambda_1 = \lambda_2$.

• Easy Cases:
$$A = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{bmatrix}$$
;

• Hard Cases:
$$A \neq \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{bmatrix}$$
, but $\lambda_1 = \lambda_2$.

Find Solutions in the Easy Cases: $A = \lambda_1 I$

▶ All vector $\vec{\mathbf{x}} \in \mathbb{R}^2$ satisfy $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$. The eigenspace of λ_1 is the entire plane.

We can pick
$$\vec{\mathbf{u}}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \vec{\mathbf{u}}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 as linearly indep eigenvectors.

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

Assume that the eigenvalues of A are: $\lambda_1 = \lambda_2$.

• Easy Cases:
$$A = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{bmatrix}$$
;

• Hard Cases:
$$A \neq \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{bmatrix}$$
, but $\lambda_1 = \lambda_2$.

- All vector $\vec{\mathbf{x}} \in \mathbb{R}^2$ satisfy $(A \lambda_1 I)\vec{\mathbf{x}} = 0$. The eigenspace of λ_1 is the entire plane. We can pick $\vec{\mathbf{u}}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\vec{\mathbf{u}}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ as linearly indep eigenvectors.
- General solutions are $\vec{\mathbf{x}}(t) = C_1 e^{\lambda_1 t} \vec{\mathbf{u}}_1 + C_2 e^{\lambda_1 t} \vec{\mathbf{u}}_2$

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

Assume that the eigenvalues of A are: $\lambda_1 = \lambda_2$.

• Easy Cases:
$$A = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{bmatrix}$$
;

• Hard Cases:
$$A \neq \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{bmatrix}$$
, but $\lambda_1 = \lambda_2$.

- All vector $\vec{\mathbf{x}} \in \mathbb{R}^2$ satisfy $(A \lambda_1 I)\vec{\mathbf{x}} = 0$. The eigenspace of λ_1 is the entire plane.
 - We can pick $\vec{\mathbf{u}}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \vec{\mathbf{u}}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ as linearly indep eigenvectors.
- General solutions are $\vec{\mathbf{x}}(t) = C_1 e^{\lambda_1 t} \vec{\mathbf{u}}_1 + C_2 e^{\lambda_1 t} \vec{\mathbf{u}}_2$ $\Rightarrow \vec{\mathbf{x}}(t) = C_1 e^{\lambda_1 t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + C_2 e^{\lambda_1 t} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

Assume that the eigenvalues of A are: $\lambda_1 = \lambda_2$.

• Easy Cases:
$$A = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{bmatrix}$$
;

• Hard Cases:
$$A \neq \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{bmatrix}$$
, but $\lambda_1 = \lambda_2$.

- All vector $\vec{\mathbf{x}} \in \mathbb{R}^2$ satisfy $(A \lambda_1 I)\vec{\mathbf{x}} = 0$. The eigenspace of λ_1 is the entire plane.
 - We can pick $\vec{\mathbf{u}}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\vec{\mathbf{u}}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ as linearly indep eigenvectors.
- General solutions are $\vec{\mathbf{x}}(t) = C_1 e^{\lambda_1 t} \vec{\mathbf{u}}_1 + C_2 e^{\lambda_1 t} \vec{\mathbf{u}}_2$ $\Rightarrow \vec{\mathbf{x}}(t) = C_1 e^{\lambda_1 t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + C_2 e^{\lambda_1 t} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \Rightarrow \vec{\mathbf{x}}(t) = e^{\lambda_1 t} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

Find an eigenvector $\vec{\mathbf{u}}$ for λ_1 , by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$.

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

▶ Find an eigenvector $\vec{\mathbf{u}}$ for λ_1 , by solving

$$(A - \lambda_1 I)\vec{\mathbf{x}} = 0.$$

Since $A \neq \lambda_1 I$, we can only pick one linearly indep eigenvector $\vec{\mathbf{u}}$. This gives partial solutions: $\vec{\mathbf{x}}(t) = Ce^{\lambda_1 t}\vec{\mathbf{u}}$.

Need more to get complete solution formula.

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

▶ Find an eigenvector $\vec{\mathbf{u}}$ for λ_1 , by solving

$$(A - \lambda_1 I)\vec{\mathbf{x}} = 0.$$

Since $A \neq \lambda_1 I$, we can only pick one linearly indep eigenvector $\vec{\mathbf{u}}$. This gives partial solutions: $\vec{\mathbf{x}}(t) = Ce^{\lambda_1 t}\vec{\mathbf{u}}$.

Need more to get complete solution formula.

ightharpoonup Find a generalized eigenvector $\vec{\mathbf{v}}$ by solving

$$(A - \lambda_1 I)\vec{\mathbf{x}} = \vec{\mathbf{u}}.$$

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

▶ Find an eigenvector $\vec{\mathbf{u}}$ for λ_1 , by solving

$$(A - \lambda_1 I)\vec{\mathbf{x}} = 0.$$

Since $A \neq \lambda_1 I$, we can only pick one linearly indep eigenvector $\vec{\mathbf{u}}$. This gives partial solutions: $\vec{\mathbf{x}}(t) = Ce^{\lambda_1 t}\vec{\mathbf{u}}$.

Need more to get complete solution formula.

ightharpoonup Find a generalized eigenvector $\vec{\mathbf{v}}$ by solving

$$(A - \lambda_1 I)\vec{\mathbf{x}} = \vec{\mathbf{u}}.$$

Solutions of $(A - \lambda_1 I)\vec{\mathbf{x}} = \vec{\mathbf{u}}$ satisfy $(A - \lambda_1 I)^2 \vec{\mathbf{x}} = (A - \lambda_1 I)\vec{\mathbf{u}} = 0$.

Nonzero solutions of $(A - \lambda_1 I)^2 \vec{\mathbf{x}} = 0$ are called generalized eigenvectors.

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

▶ Find an eigenvector $\vec{\mathbf{u}}$ for λ_1 , by solving

$$(A - \lambda_1 I)\vec{\mathbf{x}} = 0.$$

Since $A \neq \lambda_1 I$, we can only pick one linearly indep eigenvector $\vec{\mathbf{u}}$. This gives partial solutions: $\vec{\mathbf{x}}(t) = Ce^{\lambda_1 t}\vec{\mathbf{u}}$.

Need more to get complete solution formula.

ightharpoonup Find a generalized eigenvector $\vec{\mathbf{v}}$ by solving

$$(A - \lambda_1 I)\vec{\mathbf{x}} = \vec{\mathbf{u}}.$$

Solutions of $(A - \lambda_1 I)\vec{\mathbf{x}} = \vec{\mathbf{u}}$ satisfy $(A - \lambda_1 I)^2 \vec{\mathbf{x}} = (A - \lambda_1 I)\vec{\mathbf{u}} = 0$.

Nonzero solutions of $(A - \lambda_1 I)^2 \vec{\mathbf{x}} = 0$ are called generalized eigenvectors.

• General solutions are $\vec{\mathbf{x}}(t) = C_1 e^{\lambda_1 t} \vec{\mathbf{u}} + C_2 e^{\lambda_1 t} (\vec{\mathbf{v}} + t\vec{\mathbf{u}})$

2D Systems $\vec{x}' = A\vec{x}$: phase portraits & stability

$$\lambda_1 = \lambda_2 < 0, A = \lambda_1 I$$
:
Attractive proper node,
asymtotically stable

$$\lambda_1 = \lambda_2 < 0, A \neq \lambda_1 I$$
:
Attractive degenerate node, asymtotically stable

$$\lambda_1 = \lambda_2 > 0, A = \lambda_1 I$$
:
Repulsive proper node,
unstable

$$\lambda_1=\lambda_2>0, A\neq\lambda_1I:$$
 Repulsive degenerate node, unstable

$$\lambda_1 = \lambda_2 = 0, A = 0$$
:
Every point is a stable equilibrium, but not asymp stable

$$\lambda_1 = \lambda_2 = 0, A \neq 0$$
:
Laminated flow,
unstable

Example 1. (Attractive Proper node)

Consider
$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$$
, where $A = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}$.

- (a) Find general solutions of $\vec{\mathbf{x}}' = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix} \vec{\mathbf{x}}$.
- (b) Solve the initial value problem $\vec{\mathbf{x}}' = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.
- (c) Sketch the phase portrait.
- (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

Example 1.
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & 0\\ 0 & -2 \end{bmatrix} \vec{\mathbf{x}}$$

Example 1.
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & 0\\ 0 & -2 \end{bmatrix} \vec{\mathbf{x}}$$

- (a) Find general solutions.
 - ▶ Eigenvalues of A are $\lambda_1 = \lambda_2 = -2$.

Example 1.
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & 0\\ 0 & -2 \end{bmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A are $\lambda_1 = \lambda_2 = -2$.
- $(A \lambda_1 I)\vec{\mathbf{x}} = 0 \Leftrightarrow 0\vec{\mathbf{x}} = 0$: All $\vec{\mathbf{x}} \in \mathbb{R}^2$ are eigenvectors.
- ► General solutions are

$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + C_2 e^{-2t} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \Leftrightarrow \quad \vec{\mathbf{x}}(t) = e^{-2t} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

Example 1.
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & 0\\ 0 & -2 \end{bmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A are $\lambda_1 = \lambda_2 = -2$.
- $(A \lambda_1 I)\vec{\mathbf{x}} = 0 \Leftrightarrow 0\vec{\mathbf{x}} = 0$: All $\vec{\mathbf{x}} \in \mathbb{R}^2$ are eigenvectors.
- ► General solutions are

$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + C_2 e^{-2t} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \Leftrightarrow \quad \vec{\mathbf{x}}(t) = e^{-2t} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

(b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & 0\\ 0 & -2 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2\\ 3 \end{bmatrix}$$
.

Example 1.
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & 0\\ 0 & -2 \end{bmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A are $\lambda_1 = \lambda_2 = -2$.
- $(A \lambda_1 I)\vec{\mathbf{x}} = 0 \Leftrightarrow 0\vec{\mathbf{x}} = 0$: All $\vec{\mathbf{x}} \in \mathbb{R}^2$ are eigenvectors.
- ► General solutions are

$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + C_2 e^{-2t} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \Leftrightarrow \quad \vec{\mathbf{x}}(t) = e^{-2t} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

(b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & 0\\ 0 & -2 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2\\ 3 \end{bmatrix}$$
.

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Example 1.
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & 0\\ 0 & -2 \end{bmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A are $\lambda_1 = \lambda_2 = -2$.
- $(A \lambda_1 I)\vec{\mathbf{x}} = 0 \Leftrightarrow 0\vec{\mathbf{x}} = 0$: All $\vec{\mathbf{x}} \in \mathbb{R}^2$ are eigenvectors.
- ► General solutions are

$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + C_2 e^{-2t} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \Leftrightarrow \quad \vec{\mathbf{x}}(t) = e^{-2t} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

(b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -2 & 0\\ 0 & -2 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2\\ 3 \end{bmatrix}$$
.

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

► The solution to the initial value problem:

$$\vec{\mathbf{x}}(t) = e^{-2t} \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

General solutions:
$$\vec{\mathbf{x}}(t) = e^{-2t} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

General solutions:
$$\vec{\mathbf{x}}(t) = e^{-2t} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

All solutions decay to 0 in the same exponential rate $\lambda_1 = -2$. The trajectories are lines converging to the origin.

Phase Portrait (attractive proper node)

General solutions:
$$\vec{\mathbf{x}}(t) = e^{-2t} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

All solutions decay to 0 in the same exponential rate $\lambda_1 = -2$. The trajectories are lines converging to the origin.

Phase Portrait (attractive proper node)

(d) Stability?

General solutions:
$$\vec{\mathbf{x}}(t) = e^{-2t} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

All solutions decay to 0 in the same exponential rate $\lambda_1 = -2$. The trajectories are lines converging to the origin.

Phase Portrait (attractive proper node)

(d) Stability?

The equilibrium (0,0) is asymptotically stable.

General solutions:
$$\vec{\mathbf{x}}(t) = e^{-2t} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

All solutions decay to 0 in the same exponential rate $\lambda_1 = -2$. The trajectories are lines converging to the origin.

Phase Portrait (attractive proper node)

(d) Stability?

The equilibrium (0,0) is asymptotically stable.

We have an attractive proper node, when $A = \lambda_1 I$ and $\lambda_1 < 0$.

Example 2. (Repulsive proper node)

$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$$
, where $A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$.

- (a) Find general solutions of $\vec{\mathbf{x}}' = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \vec{\mathbf{x}}$.
- (b) Solve the initial value problem $\vec{\mathbf{x}}' = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$
- (c) Sketch the phase portrait.
- (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

Example 2.
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \vec{\mathbf{x}}$$

Example 2.
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \vec{\mathbf{x}}$$

General solutions are
$$\vec{\mathbf{x}}(t) = e^{3t} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

Example 2.
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \vec{\mathbf{x}}$$

General solutions are
$$\vec{\mathbf{x}}(t) = e^{3t} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

(b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
.

Example 2.
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \vec{\mathbf{x}}$$

General solutions are
$$\vec{\mathbf{x}}(t) = e^{3t} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

(b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
.

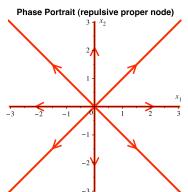
The solution to the initial value problem: $\vec{\mathbf{x}}(t) = e^{3t} \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

General solutions:
$$\vec{\mathbf{x}}(t) = e^{3t} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

Example 2 (c) Phase portrait of $\frac{d\vec{x}}{dt} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \vec{x}$

General solutions:
$$\vec{\mathbf{x}}(t) = e^{3t} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

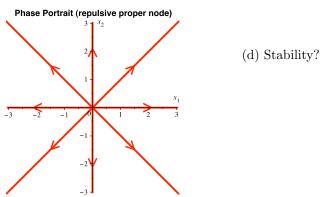
All solutions grow in the same exponential rate $\lambda_1 = 3$. The trajectories are lines emanating from the origin.



Example 2 (c) Phase portrait of $\frac{d\vec{x}}{dt} = \begin{vmatrix} 3 & 0 \\ 0 & 3 \end{vmatrix} \vec{x}$

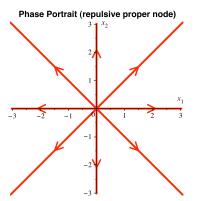
General solutions:
$$\vec{\mathbf{x}}(t) = e^{3t} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

All solutions grow in the same exponential rate $\lambda_1 = 3$. The trajectories are lines emanating from the origin.



General solutions:
$$\vec{\mathbf{x}}(t) = e^{3t} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

All solutions grow in the same exponential rate $\lambda_1 = 3$. The trajectories are lines emanating from the origin.



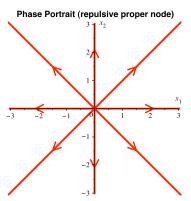
(d) Stability?

The equilibrium (0,0) is unstable.

Example 2 (c) Phase portrait of $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \vec{\mathbf{x}}$

General solutions:
$$\vec{\mathbf{x}}(t) = e^{3t} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

All solutions grow in the same exponential rate $\lambda_1 = 3$. The trajectories are lines emanating from the origin.



(d) Stability?

The equilibrium (0,0) is unstable.

We have a repulsive proper node, when $A = \lambda_1 I$ and $\lambda_1 > 0$.

Example 3. (attractive degenerate node)

Consider
$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$$
, where $A = \begin{bmatrix} -7 & 8 \\ -2 & 1 \end{bmatrix}$.

- (a) Find general solutions of $\vec{\mathbf{x}}' = \begin{bmatrix} -7 & 8 \\ -2 & 1 \end{bmatrix} \vec{\mathbf{x}}$.
- (b) Solve the initial value problem $\vec{\mathbf{x}}' = \begin{bmatrix} -7 & 8 \\ -2 & 1 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$
- (c) Sketch the phase portrait.
- (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

Example 3 (a)
$$\vec{\mathbf{x}}' = \begin{bmatrix} -7 & 8 \\ -2 & 1 \end{bmatrix} \vec{\mathbf{x}}$$

Example 3 (a)
$$\vec{\mathbf{x}}' = \begin{bmatrix} -7 & 8 \\ -2 & 1 \end{bmatrix} \vec{\mathbf{x}}$$

ightharpoonup Eigenvalues of A, by solving $\det(A - \lambda I) = 0$:

$$\det \begin{bmatrix} -7 - \lambda & 8 \\ -2 & 1 - \lambda \end{bmatrix} = \lambda^2 + 6\lambda + 9 = 0 \quad \Rightarrow \lambda_1 = \lambda_2 = -3$$

Example 3 (a)
$$\vec{\mathbf{x}}' = \begin{bmatrix} -7 & 8 \\ -2 & 1 \end{bmatrix} \vec{\mathbf{x}}$$

▶ Eigenvalues of A, by solving $det(A - \lambda I) = 0$:

$$\det \begin{bmatrix} -7 - \lambda & 8 \\ -2 & 1 - \lambda \end{bmatrix} = \lambda^2 + 6\lambda + 9 = 0 \quad \Rightarrow \lambda_1 = \lambda_2 = -3$$

▶ Eigenvectors of A for $\lambda_1 = \lambda_2 = -3$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$(A+3I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} -4 & 8 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Example 3 (a)
$$\vec{\mathbf{x}}' = \begin{bmatrix} -7 & 8 \\ -2 & 1 \end{bmatrix} \vec{\mathbf{x}}$$

▶ Eigenvalues of A, by solving $det(A - \lambda I) = 0$:

$$\det \begin{bmatrix} -7 - \lambda & 8 \\ -2 & 1 - \lambda \end{bmatrix} = \lambda^2 + 6\lambda + 9 = 0 \quad \Rightarrow \lambda_1 = \lambda_2 = -3$$

► Eigenvectors of A for $\lambda_1 = \lambda_2 = -3$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$(A+3I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} -4 & 8 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

- Can only pick one linear indep eigenvector $\vec{\mathbf{u}} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
- Partial solutions: $\vec{\mathbf{x}}(t) = Ce^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
- Need more to get complete solution formula.

Example 3 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -7 & 8 \\ -2 & 1 \end{bmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = \lambda_2 = -3$
- An eigenvector for $\lambda_1 = \lambda_2 = -3$: $\vec{\mathbf{u}} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

Example 3 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -7 & 8 \\ -2 & 1 \end{vmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = \lambda_2 = -3$
- An eigenvector for $\lambda_1 = \lambda_2 = -3$: $\vec{\mathbf{u}} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
- Find a generalized eigenvector, by solving $(A \lambda_1 I)\vec{\mathbf{x}} = \vec{\mathbf{u}}$:

$$(A+3I)\vec{\mathbf{x}} = \vec{\mathbf{u}} \Leftrightarrow \begin{bmatrix} -4 & 8 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
$$\Leftrightarrow -2x_1 + 4x_2 = 1 \Leftrightarrow x_1 = -\frac{1}{2} + 2x_2 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} + 2x_2 \\ x_2 \end{bmatrix}$$

Example 3 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -7 & 8 \\ -2 & 1 \end{vmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = \lambda_2 = -3$
- An eigenvector for $\lambda_1 = \lambda_2 = -3$: $\vec{\mathbf{u}} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
- ► Find a generalized eigenvector, by solving $(A \lambda_1 I)\vec{\mathbf{x}} = \vec{\mathbf{u}}$:

$$(A+3I)\vec{\mathbf{x}} = \vec{\mathbf{u}} \Leftrightarrow \begin{bmatrix} -4 & 8 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\Leftrightarrow -2x_1 + 4x_2 = 1 \Leftrightarrow x_1 = -\frac{1}{2} + 2x_2 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} + 2x_2 \\ x_2 \end{bmatrix}$$

$$\Rightarrow \text{A generalized eigenvector } \vec{\mathbf{v}} = \begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix}.$$

Example 3 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -7 & 8 \\ -2 & 1 \end{bmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = \lambda_2 = -3$
- An eigenvector for $\lambda_1 = \lambda_2 = -3$: $\vec{\mathbf{u}} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
- ► Find a generalized eigenvector, by solving $(A \lambda_1 I)\vec{\mathbf{x}} = \vec{\mathbf{u}}$:

$$(A+3I)\vec{\mathbf{x}} = \vec{\mathbf{u}} \Leftrightarrow \begin{bmatrix} -4 & 8 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\Leftrightarrow -2x_1 + 4x_2 = 1 \Leftrightarrow x_1 = -\frac{1}{2} + 2x_2 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} + 2x_2 \\ x_2 \end{bmatrix}$$

$$\Rightarrow \text{A generalized eigenvector } \vec{\mathbf{v}} = \begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix}.$$

• General solutions are $\vec{\mathbf{x}}(t) = C_1 e^{\lambda_1 t} \vec{\mathbf{u}} + C_2 e^{\lambda_1 t} (\vec{\mathbf{v}} + t \vec{\mathbf{u}}),$

Example 3 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -7 & 8 \\ -2 & 1 \end{bmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = \lambda_2 = -3$
- An eigenvector for $\lambda_1 = \lambda_2 = -3$: $\vec{\mathbf{u}} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
- ► Find a generalized eigenvector, by solving $(A \lambda_1 I)\vec{\mathbf{x}} = \vec{\mathbf{u}}$:

$$(A+3I)\vec{\mathbf{x}} = \vec{\mathbf{u}} \Leftrightarrow \begin{bmatrix} -4 & 8 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\Leftrightarrow -2x_1 + 4x_2 = 1 \Leftrightarrow x_1 = -\frac{1}{2} + 2x_2 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} + 2x_2 \\ x_2 \end{bmatrix}$$

$$\Rightarrow \text{A generalized eigenvector } \vec{\mathbf{v}} = \begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix}.$$

General solutions are $\vec{\mathbf{x}}(t) = C_1 e^{\lambda_1 t} \vec{\mathbf{u}} + C_2 e^{\lambda_1 t} (\vec{\mathbf{v}} + t \vec{\mathbf{u}}),$ $\vec{\mathbf{x}}(t) = C_1 e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-3t} \left(\begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right)$

Example 3 (b) Solve $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -7 & 8 \\ -2 & 1 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

Example 3 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -7 & 8 \\ -2 & 1 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

► General solutions:

$$\vec{\mathbf{x}}(t) = C_1 e^{-3t} \begin{bmatrix} 2\\1 \end{bmatrix} + C_2 e^{-3t} \left(\begin{bmatrix} -\frac{1}{2}\\0 \end{bmatrix} + t \begin{bmatrix} 2\\1 \end{bmatrix} \right)$$

Example 3 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -7 & 8 \\ -2 & 1 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

► General solutions:

$$\vec{\mathbf{x}}(t) = C_1 e^{-3t} \begin{bmatrix} 2\\1 \end{bmatrix} + C_2 e^{-3t} \left(\begin{bmatrix} -\frac{1}{2}\\0 \end{bmatrix} + t \begin{bmatrix} 2\\1 \end{bmatrix} \right)$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 2\\3 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} 2\\1 \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{2}\\0 \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 2 & -\frac{1}{2}\\1 & 0 \end{bmatrix} \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 3\\8 \end{bmatrix}$$

Example 3 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -7 & 8 \\ -2 & 1 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

► General solutions:

$$\vec{\mathbf{x}}(t) = C_1 e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-3t} \left(\begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right)$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 & -\frac{1}{2} \\ 1 & 0 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 8 \end{bmatrix}$$

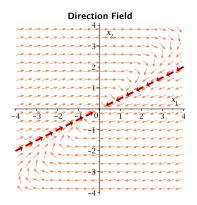
▶ The solution to the initial value problem:

$$\vec{\mathbf{x}}(t) = 3e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 8e^{-3t} \left(\begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right) = e^{-3t} \begin{bmatrix} 2 + 16t \\ 3 + 8t \end{bmatrix}$$

Example 3 (c) Phase portrait of $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -7 & 8 \\ -2 & 1 \end{bmatrix} \vec{\mathbf{x}}$ General solutions: $\vec{\mathbf{x}}(t) = C_1 e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-3t} \left(\begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right)$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-3t} \begin{pmatrix} \begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \end{bmatrix} \end{pmatrix}$$

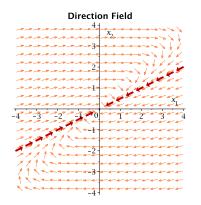
Example 3 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -7 & 8 \\ -2 & 1 \end{bmatrix} \vec{\mathbf{x}}$$
General solutions: $\vec{\mathbf{x}}(t) = C_1 e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-3t} \left(\begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right)$

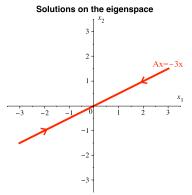


General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-3t} \begin{pmatrix} \begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \end{bmatrix} \end{pmatrix}$$

• When $C_2 = 0$, $\vec{\mathbf{x}}(t) = C_1 e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ decays to the origin,

along the eigenspace of $\lambda_1 = \lambda_2 = -3$.



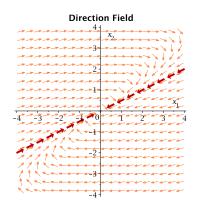


Example 3 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -7 & 8 \\ -2 & 1 \end{vmatrix} \vec{\mathbf{x}}$$

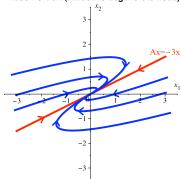
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-3t} \begin{bmatrix} 2\\1 \end{bmatrix} + C_2 e^{-3t} \begin{pmatrix} \begin{bmatrix} -\frac{1}{2}\\0 \end{bmatrix} + t \begin{bmatrix} 2\\1 \end{bmatrix} \end{pmatrix}$$

• When $C_2 \neq 0$, $\vec{\mathbf{x}}(t) \approx C_2 t e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ for $t \approx \infty$,

decaying to the origin along the eigenspace of $\lambda_1 = \lambda_2 = -3$.



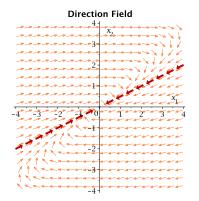
Phase Portrait (attractive degenerate node)



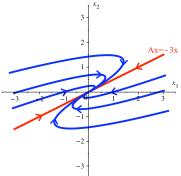
Example 3 (c) Phase portrait of
$$\frac{d\vec{x}}{dt} = \begin{bmatrix} -7 & 8 \\ -2 & 1 \end{bmatrix} \vec{x}$$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-3t} \begin{pmatrix} \begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \end{bmatrix} \end{pmatrix}$$

• When $C_2 \neq 0$, $\vec{\mathbf{x}}(t) \approx C_2 t e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is very small, for $t \approx \infty$;



Phase Portrait (attractive degenerate node)

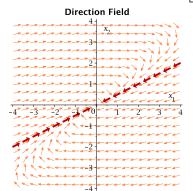


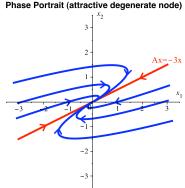
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-3t} \begin{pmatrix} \begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \end{bmatrix} \end{pmatrix}$$

• When $C_2 \neq 0$, $\vec{\mathbf{x}}(t) \approx C_2 t e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is very small, for $t \approx \infty$;

$$\vec{\mathbf{x}}(t) \approx C_2 t e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 is very large, for $t \approx -\infty$.

Phase Portrait (attractive degenerate node





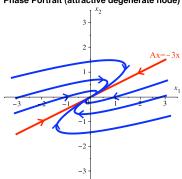
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-3t} \begin{pmatrix} \begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \end{bmatrix} \end{pmatrix}$$

• When $C_2 \neq 0$, $\vec{\mathbf{x}}(t) \approx C_2 t e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is very small, for $t \approx \infty$;

$$\vec{\mathbf{x}}(t) \approx C_2 t e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 is very large, for $t \approx -\infty$.

Phase Portrait (attractive degenerate node)

(d) Stability or instability?



General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-3t} \begin{pmatrix} \begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \end{bmatrix} \end{pmatrix}$$

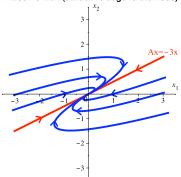
• When $C_2 \neq 0$, $\vec{\mathbf{x}}(t) \approx C_2 t e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is very small, for $t \approx \infty$;

$$\vec{\mathbf{x}}(t) \approx C_2 t e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 is very large, for $t \approx -\infty$.

(d) Stability or instability?

The equilibrium (0,0) is asymptotically stable.

Phase Portrait (attractive degenerate node)



General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-3t} \begin{pmatrix} \begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix} + \frac{t}{t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \end{pmatrix}$$

• When $C_2 \neq 0$, $\vec{\mathbf{x}}(t) \approx C_2 t e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is very small, for $t \approx \infty$;

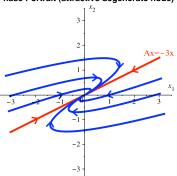
$$\vec{\mathbf{x}}(t) \approx C_2 t e^{-3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 is very large, for $t \approx -\infty$.

(d) Stability or instability?

The equilibrium (0,0) is asymptotically stable.

We have an attractive degenerate node, when $\lambda_1 = \lambda_2 < 0$, but $A \neq \lambda_1 I$.

Phase Portrait (attractive degenerate node)



Example 4. (repulsive degenerate node)

Consider
$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$$
, where $A = \begin{bmatrix} 1 & -1 \\ 4 & 5 \end{bmatrix}$.

- (a) Find general solutions of $\vec{\mathbf{x}}' = \begin{bmatrix} 1 & -1 \\ 4 & 5 \end{bmatrix} \vec{\mathbf{x}}$.
- (b) Solve the initial value problem $\vec{\mathbf{x}}' = \begin{bmatrix} 1 & -1 \\ 4 & 5 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.
- (c) Sketch the phase portrait.
- (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

Example 4 (a)
$$\vec{\mathbf{x}}' = \begin{bmatrix} 1 & -1 \\ 4 & 5 \end{bmatrix} \vec{\mathbf{x}}$$

Example 4 (a)
$$\vec{\mathbf{x}}' = \begin{bmatrix} 1 & -1 \\ 4 & 5 \end{bmatrix} \vec{\mathbf{x}}$$

▶ Eigenvalues of A, by solving $det(A - \lambda I) = 0$:

$$\det\begin{bmatrix} 1 - \lambda & -1 \\ 4 & 5 - \lambda \end{bmatrix} = \lambda^2 - 6\lambda + 9 = 0 \quad \Rightarrow \lambda_1 = \lambda_2 = 3$$

Example 4 (a)
$$\vec{\mathbf{x}}' = \begin{bmatrix} 1 & -1 \\ 4 & 5 \end{bmatrix} \vec{\mathbf{x}}$$

ightharpoonup Eigenvalues of A, by solving $\det(A - \lambda I) = 0$:

$$\det\begin{bmatrix} 1 - \lambda & -1 \\ 4 & 5 - \lambda \end{bmatrix} = \lambda^2 - 6\lambda + 9 = 0 \quad \Rightarrow \lambda_1 = \lambda_2 = 3$$

▶ Eigenvectors of A for $\lambda_1 = \lambda_2 = 3$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$(A-3I)\vec{\mathbf{x}}=0\Leftrightarrow\begin{bmatrix}-2 & -1\\4 & 2\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}\quad\Leftrightarrow\begin{bmatrix}x_1\\x_2\end{bmatrix}=x_2\begin{bmatrix}-\frac{1}{2}\\1\end{bmatrix}$$

Example 4 (a)
$$\vec{\mathbf{x}}' = \begin{bmatrix} 1 & -1 \\ 4 & 5 \end{bmatrix} \vec{\mathbf{x}}$$

▶ Eigenvalues of A, by solving $det(A - \lambda I) = 0$:

$$\det\begin{bmatrix} 1 - \lambda & -1 \\ 4 & 5 - \lambda \end{bmatrix} = \lambda^2 - 6\lambda + 9 = 0 \quad \Rightarrow \lambda_1 = \lambda_2 = 3$$

► Eigenvectors of A for $\lambda_1 = \lambda_2 = 3$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$(A-3I)\vec{\mathbf{x}}=0 \Leftrightarrow \begin{bmatrix} -2 & -1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$$

- Can only pick one linear indep eigenvector $\vec{\mathbf{u}} = \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$.
- Partial solutions: $\vec{\mathbf{x}}(t) = Ce^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$.
- Need more to get complete solution formula.

Example 4 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 1 & -1 \\ 4 & 5 \end{bmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = \lambda_2 = 3$
- An eigenvector for $\lambda_1 = \lambda_2 = 3$: $\vec{\mathbf{u}} = \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$

Example 4 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} 1 & -1 \\ 4 & 5 \end{vmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = \lambda_2 = 3$
- An eigenvector for $\lambda_1 = \lambda_2 = 3$: $\vec{\mathbf{u}} = \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$
- ► Find a generalized eigenvector, by solving $(A \lambda_1 I)\vec{\mathbf{x}} = \vec{\mathbf{u}}$:

$$(A - 3I)\vec{\mathbf{x}} = \vec{\mathbf{u}} \Leftrightarrow \begin{bmatrix} -2 & -1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$$
$$\Leftrightarrow -2x_1 - x_2 = -\frac{1}{2} \Leftrightarrow x_1 = \frac{1}{4} - \frac{1}{2}x_2 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} - \frac{1}{2}x_2 \\ x_2 \end{bmatrix}$$

Example 4 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} 1 & -1 \\ 4 & 5 \end{vmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = \lambda_2 = 3$
- An eigenvector for $\lambda_1 = \lambda_2 = 3$: $\vec{\mathbf{u}} = \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$
- ► Find a generalized eigenvector, by solving $(A \lambda_1 I)\vec{\mathbf{x}} = \vec{\mathbf{u}}$:

$$(A - 3I)\vec{\mathbf{x}} = \vec{\mathbf{u}} \Leftrightarrow \begin{bmatrix} -2 & -1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$$

$$\Leftrightarrow -2x_1 - x_2 = -\frac{1}{2} \Leftrightarrow x_1 = \frac{1}{4} - \frac{1}{2}x_2 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} - \frac{1}{2}x_2 \\ x_2 \end{bmatrix}$$

$$\Rightarrow \text{A generalized eigenvector } \vec{\mathbf{v}} = \begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix}.$$

Example 4 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 1 & -1 \\ 4 & 5 \end{bmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = \lambda_2 = 3$
- An eigenvector for $\lambda_1 = \lambda_2 = 3$: $\vec{\mathbf{u}} = \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$
- ► Find a generalized eigenvector, by solving $(A \lambda_1 I)\vec{\mathbf{x}} = \vec{\mathbf{u}}$:

$$(A - 3I)\vec{\mathbf{x}} = \vec{\mathbf{u}} \Leftrightarrow \begin{bmatrix} -2 & -1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$$

$$\Leftrightarrow -2x_1 - x_2 = -\frac{1}{2} \Leftrightarrow x_1 = \frac{1}{4} - \frac{1}{2}x_2 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} - \frac{1}{2}x_2 \\ x_2 \end{bmatrix}$$

$$\Rightarrow \text{A generalized eigenvector } \vec{\mathbf{v}} = \begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix}.$$

• General solutions are $\vec{\mathbf{x}}(t) = C_1 e^{\lambda_1 t} \vec{\mathbf{u}} + C_2 e^{\lambda_1 t} (\vec{\mathbf{v}} + t \vec{\mathbf{u}}),$

Example 4 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} 1 & -1 \\ 4 & 5 \end{vmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = \lambda_2 = 3$
- An eigenvector for $\lambda_1 = \lambda_2 = 3$: $\vec{\mathbf{u}} = \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$
- Find a generalized eigenvector, by solving $(A \lambda_1 I)\vec{\mathbf{x}} = \vec{\mathbf{u}}$:

$$(A - 3I)\vec{\mathbf{x}} = \vec{\mathbf{u}} \Leftrightarrow \begin{bmatrix} -2 & -1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$$

$$\Leftrightarrow -2x_1 - x_2 = -\frac{1}{2} \Leftrightarrow x_1 = \frac{1}{4} - \frac{1}{2}x_2 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} - \frac{1}{2}x_2 \\ x_2 \end{bmatrix}$$

$$\Rightarrow \text{A generalized eigenvector } \vec{\mathbf{v}} = \begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix}.$$

General solutions are $\vec{\mathbf{x}}(t) = C_1 e^{\lambda_1 t} \vec{\mathbf{u}} + C_2 e^{\lambda_1 t} (\vec{\mathbf{v}} + t \vec{\mathbf{u}}),$ $\vec{\mathbf{x}}(t) = C_1 e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + C_2 e^{3t} \begin{pmatrix} \begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix} + t \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} \end{pmatrix}$

Example 4 (b) Solve $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 1 & -1 \\ 4 & 5 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

Example 4 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 1 & -1 \\ 4 & 5 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) = C_1 e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + C_2 e^{3t} \begin{pmatrix} \begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix} + t \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} \end{pmatrix}$$

Example 4 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 1 & -1 \\ 4 & 5 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) = C_1 e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + C_2 e^{3t} \begin{pmatrix} \begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix} + t \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} \end{pmatrix}$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 2\\3 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} -\frac{1}{2}\\1 \end{bmatrix} + C_2 \begin{bmatrix} \frac{1}{4}\\0 \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{4}\\1 & 0 \end{bmatrix} \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 3\\14 \end{bmatrix}$$

Example 4 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 1 & -1 \\ 4 & 5 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) = C_1 e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + C_2 e^{3t} \left(\begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix} + t \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} \right)$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 2\\3 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} -\frac{1}{2}\\1 \end{bmatrix} + C_2 \begin{bmatrix} \frac{1}{4}\\0 \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{4}\\1 & 0 \end{bmatrix} \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 3\\14 \end{bmatrix}$$

▶ The solution to the initial value problem:

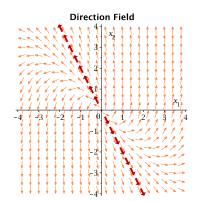
$$\vec{\mathbf{x}}(t) = 3e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + 14e^{3t} \left(\begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix} + t \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} \right) = e^{3t} \begin{bmatrix} 2 - 7t \\ 3 + 14t \end{bmatrix}$$

Example 4 (c) Phase portrait of $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 1 & -1 \\ 4 & 5 \end{bmatrix} \vec{\mathbf{x}}$ General solutions: $\vec{\mathbf{x}}(t) = C_1 e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + C_2 e^{3t} \left(\begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix} + t \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} \right)$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + C_2 e^{3t} \begin{pmatrix} \begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix} + t \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} \end{pmatrix}$$

Example 4 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 1 & -1 \\ 4 & 5 \end{bmatrix} \vec{\mathbf{x}}$$
General solutions: $\vec{\mathbf{x}}(t) = C_1 e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + C_2 e^{3t} \begin{pmatrix} \begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix} + t \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} \end{pmatrix}$

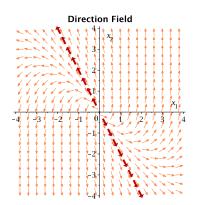
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + C_2 e^{3t} \left(\begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix} + t \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} \right)$$

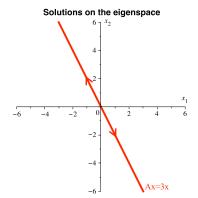


General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + C_2 e^{3t} \begin{pmatrix} \begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix} + t \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} \end{pmatrix}$$

• When $C_2 = 0$, $\vec{\mathbf{x}}(t) = C_1 e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$ leaves the origin,

along the eigenspace of $\lambda_1 = \lambda_2 = 3$.





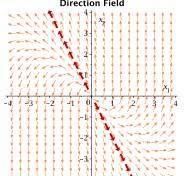
Example 4 (c) Phase portrait of $\frac{d\vec{x}}{dt} = \begin{vmatrix} 1 & -1 \\ 4 & 5 \end{vmatrix} \vec{x}$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + C_2 e^{3t} \begin{pmatrix} \begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix} + t \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} \end{pmatrix}$$

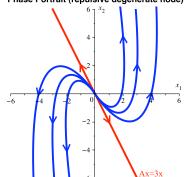
• When $C_2 \neq 0$, $\vec{\mathbf{x}}(t) \approx C_2 t e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$ is very large, for $t \approx \infty$;

$$\vec{\mathbf{x}}(t) \approx C_2 t e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$$
 is very small, for $t \approx -\infty$.

Direction Field



Phase Portrait (repulsive degenerate node)



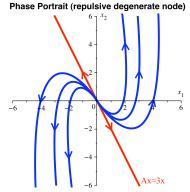
Example 4 (c) Phase portrait of $\frac{d\vec{x}}{dt} = \begin{vmatrix} 1 & -1 \\ 4 & 5 \end{vmatrix} \vec{x}$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + C_2 e^{3t} \begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix} + t \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$$

• When $C_2 \neq 0$, $\vec{\mathbf{x}}(t) \approx C_2 t e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$ is very large, for $t \approx \infty$;

$$\vec{\mathbf{x}}(t) \approx C_2 t e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$$
 is very small, for $t \approx -\infty$.

(d) Stability or instability?



Example 4 (c) Phase portrait of $\frac{d\vec{x}}{dt} = \begin{vmatrix} 1 & -1 \\ 4 & 5 \end{vmatrix} \vec{x}$

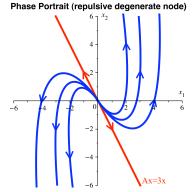
General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + C_2 e^{3t} \begin{pmatrix} \begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix} + t \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} \end{pmatrix}$$

• When $C_2 \neq 0$, $\vec{\mathbf{x}}(t) \approx C_2 t e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$ is very large, for $t \approx \infty$;

$$\vec{\mathbf{x}}(t) \approx C_2 t e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$$
 is very small, for $t \approx -\infty$.

(d) Stability or instability?

The equilibrium (0,0) is unstable.



Example 4 (c) Phase portrait of $\frac{d\vec{x}}{dt} = \begin{bmatrix} 1 & -1 \\ 4 & 5 \end{bmatrix} \vec{x}$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + C_2 e^{3t} \begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix} + t \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$$

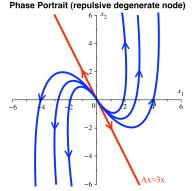
• When $C_2 \neq 0$, $\vec{\mathbf{x}}(t) \approx C_2 t e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$ is very large, for $t \approx \infty$;

$$\vec{\mathbf{x}}(t) \approx C_2 t e^{3t} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$$
 is very small, for $t \approx -\infty$.

(d) Stability or instability?

The equilibrium (0,0) is unstable.

We have a repulsive degenerate node, when $\lambda_1 = \lambda_2 > 0$, but $A \neq \lambda_1 I$.



Example 5. (laminated flow)

Consider
$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$$
, where $A = \begin{bmatrix} -6 & 4 \\ -9 & 6 \end{bmatrix}$.

- (a) Find general solutions of $\vec{\mathbf{x}}' = \begin{bmatrix} -6 & 4 \\ -9 & 6 \end{bmatrix} \vec{\mathbf{x}}$.
- (b) Solve the initial value problem $\vec{\mathbf{x}}' = \begin{bmatrix} -6 & 4 \\ -9 & 6 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$
- (c) Sketch the phase portrait.
- (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

Example 5 (a) $\vec{\mathbf{x}}' = \begin{bmatrix} -6 & 4 \\ -9 & 6 \end{bmatrix} \vec{\mathbf{x}}$

Example 5 (a)
$$\vec{\mathbf{x}}' = \begin{bmatrix} -6 & 4 \\ -9 & 6 \end{bmatrix} \vec{\mathbf{x}}$$

ightharpoonup Eigenvalues of A, by solving $\det(A - \lambda I) = 0$:

$$\det \begin{bmatrix} -6 - \lambda & 4 \\ -9 & 6 - \lambda \end{bmatrix} = \lambda^2 = 0 \quad \Rightarrow \lambda_1 = \lambda_2 = 0$$

Example 5 (a)
$$\vec{\mathbf{x}}' = \begin{bmatrix} -6 & 4 \\ -9 & 6 \end{bmatrix} \vec{\mathbf{x}}$$

▶ Eigenvalues of A, by solving $det(A - \lambda I) = 0$:

$$\det \begin{bmatrix} -6 - \lambda & 4 \\ -9 & 6 - \lambda \end{bmatrix} = \lambda^2 = 0 \quad \Rightarrow \lambda_1 = \lambda_2 = 0$$

▶ Eigenvectors of A for $\lambda_1 = \lambda_2 = 0$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$A\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} -6 & 4 \\ -9 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$$

Example 5 (a)
$$\vec{\mathbf{x}}' = \begin{bmatrix} -6 & 4 \\ -9 & 6 \end{bmatrix} \vec{\mathbf{x}}$$

ightharpoonup Eigenvalues of A, by solving $\det(A - \lambda I) = 0$:

$$\det \begin{bmatrix} -6 - \lambda & 4 \\ -9 & 6 - \lambda \end{bmatrix} = \lambda^2 = 0 \quad \Rightarrow \lambda_1 = \lambda_2 = 0$$

▶ Eigenvectors of A for $\lambda_1 = \lambda_2 = 0$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$A\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} -6 & 4 \\ -9 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$$

- Can only pick one linear indep eigenvector $\vec{\mathbf{u}} = \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$.
- Equilibrium solutions: $\vec{\mathbf{x}}(t) = C \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$.
- Need more to get complete solution formula.

Example 5 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -6 & 4\\ -9 & 6 \end{bmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = \lambda_2 = 0$
- An eigenvector for $\lambda_1 = \lambda_2 = 0$: $\vec{\mathbf{u}} = \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$

Example 5 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -6 & 4 \\ -9 & 6 \end{vmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = \lambda_2 = 0$
- An eigenvector for $\lambda_1 = \lambda_2 = 0$: $\vec{\mathbf{u}} = \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$
- ► Find a generalized eigenvector, by solving $(A \lambda_1 I)\vec{\mathbf{x}} = \vec{\mathbf{u}}$:

$$A\vec{\mathbf{x}} = \vec{\mathbf{u}} \Leftrightarrow \begin{bmatrix} -6 & 4\\ -9 & 6 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{2}{3}\\ 1 \end{bmatrix}$$
$$\Leftrightarrow -6x_1 + 4x_2 = \frac{2}{3} \Leftrightarrow x_1 = -\frac{1}{9} + \frac{2}{3}x_2 \Leftrightarrow \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{9} + \frac{2}{3}x_2\\ x_2 \end{bmatrix}$$

Example 5 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -6 & 4\\ -9 & 6 \end{bmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = \lambda_2 = 0$
- An eigenvector for $\lambda_1 = \lambda_2 = 0$: $\vec{\mathbf{u}} = \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$
- ► Find a generalized eigenvector, by solving $(A \lambda_1 I)\vec{\mathbf{x}} = \vec{\mathbf{u}}$:

$$A\vec{\mathbf{x}} = \vec{\mathbf{u}} \Leftrightarrow \begin{bmatrix} -6 & 4 \\ -9 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$$

$$\Leftrightarrow -6x_1 + 4x_2 = \frac{2}{3} \Leftrightarrow x_1 = -\frac{1}{9} + \frac{2}{3}x_2 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{9} + \frac{2}{3}x_2 \\ x_2 \end{bmatrix}$$

$$\Rightarrow \text{A generalized eigenvector } \vec{\mathbf{v}} = \begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix}.$$

Example 5 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -6 & 4\\ -9 & 6 \end{bmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = \lambda_2 = 0$
- An eigenvector for $\lambda_1 = \lambda_2 = 0$: $\vec{\mathbf{u}} = \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$
- ► Find a generalized eigenvector, by solving $(A \lambda_1 I)\vec{\mathbf{x}} = \vec{\mathbf{u}}$:

$$A\vec{\mathbf{x}} = \vec{\mathbf{u}} \Leftrightarrow \begin{bmatrix} -6 & 4 \\ -9 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$$

$$\Leftrightarrow -6x_1 + 4x_2 = \frac{2}{3} \Leftrightarrow x_1 = -\frac{1}{9} + \frac{2}{3}x_2 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{9} + \frac{2}{3}x_2 \\ x_2 \end{bmatrix}$$

$$\Rightarrow \text{A generalized eigenvector } \vec{\mathbf{v}} = \begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix}.$$

• General solutions are $\vec{\mathbf{x}}(t) = C_1 e^{\lambda_1 t} \vec{\mathbf{u}} + C_2 e^{\lambda_1 t} (\vec{\mathbf{v}} + t \vec{\mathbf{u}}),$

Example 5 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -6 & 4\\ -9 & 6 \end{bmatrix} \vec{\mathbf{x}}$$

- ▶ Eigenvalues of A: $\lambda_1 = \lambda_2 = 0$
- An eigenvector for $\lambda_1 = \lambda_2 = 0$: $\vec{\mathbf{u}} = \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$
- ► Find a generalized eigenvector, by solving $(A \lambda_1 I)\vec{\mathbf{x}} = \vec{\mathbf{u}}$:

$$A\vec{\mathbf{x}} = \vec{\mathbf{u}} \Leftrightarrow \begin{bmatrix} -6 & 4 \\ -9 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$$

$$\Leftrightarrow -6x_1 + 4x_2 = \frac{2}{3} \Leftrightarrow x_1 = -\frac{1}{9} + \frac{2}{3}x_2 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{9} + \frac{2}{3}x_2 \\ x_2 \end{bmatrix}$$

$$\Rightarrow \text{A generalized eigenvector } \vec{\mathbf{v}} = \begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix}.$$

General solutions are $\vec{\mathbf{x}}(t) = C_1 e^{\lambda_1 t} \vec{\mathbf{u}} + C_2 e^{\lambda_1 t} (\vec{\mathbf{v}} + t \vec{\mathbf{u}}),$ $\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} + C_2 \left(\begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix} + t \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} \right)$

Example 5 (b) Solve $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -6 & 4 \\ -9 & 6 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

Example 5 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -6 & 4 \\ -9 & 6 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} + C_2 \left(\begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix} + t \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} \right)$$

Example 5 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -6 & 4 \\ -9 & 6 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} + C_2 \left(\begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix} + t \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} \right)$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 2\\3 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} \frac{2}{3}\\1 \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{9}\\0 \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} \frac{2}{3} & -\frac{1}{9}\\1 & 0 \end{bmatrix} \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 3\\0 \end{bmatrix}$$

Example 5 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -6 & 4 \\ -9 & 6 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} + C_2 \left(\begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix} + t \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} \right)$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 2\\3 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} \frac{2}{3}\\1 \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{9}\\0 \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} \frac{2}{3} & -\frac{1}{9}\\1 & 0 \end{bmatrix} \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 3\\0 \end{bmatrix}$$

▶ The solution to the initial value problem:

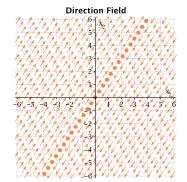
$$\vec{\mathbf{x}}(t) = 3 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
 (an equilibrium)

General solutions:

$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} + C_2 \left(\begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix} + t \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} \right)$$

Example 5 (c) Phase portrait of
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -6 & 4 \\ -9 & 6 \end{bmatrix} \vec{\mathbf{x}}$$

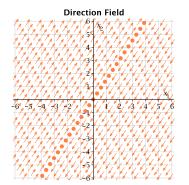
$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} + C_2 \left(\begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix} + t \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} \right)$$

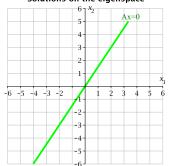


General solutions:

$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} + C_2 \left(\begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix} + t \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} \right)$$

• When $C_2 = 0$: $\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$ are equilibria, lining along the eigenspace.



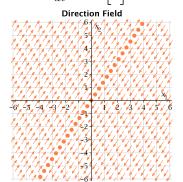


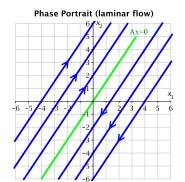
General solutions:

$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} + C_2 \left(\begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix} + t \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} \right) = \left(C_1 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix} \right) + t C_2 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$$

• When $C_2 \neq 0$: $\vec{\mathbf{x}}(t)$ are linear functions, with $\vec{\mathbf{x}}(0) = C_1 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix}$;

velocity $\frac{d\vec{\mathbf{x}}}{dt} = C_2 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$ is parallel to the eigenspace.





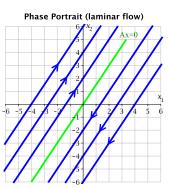
General solutions:

$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} + C_2 \left(\begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix} + t \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} \right) = \left(C_1 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix} \right) + t C_2 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$$

• When $C_2 \neq 0$: $\vec{\mathbf{x}}(t)$ are linear functions, with $\vec{\mathbf{x}}(0) = C_1 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix}$;

velocity $\frac{d\vec{\mathbf{x}}}{dt} = C_2 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$ is parallel to the eigenspace.

(d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?



General solutions:

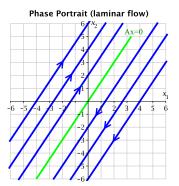
$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} + C_2 \left(\begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix} + t \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} \right) = \left(C_1 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix} \right) + t C_2 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$$

• When $C_2 \neq 0$: $\vec{\mathbf{x}}(t)$ are linear functions, with $\vec{\mathbf{x}}(0) = C_1 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix}$;

velocity $\frac{d\vec{\mathbf{x}}}{dt} = C_2 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$ is parallel to the eigenspace.

(d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

The equilibrium (0,0) is unstable.



General solutions:

$$\vec{\mathbf{x}}(t) = C_1 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} + C_2 \left(\begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix} + t \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} \right) = \left(C_1 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix} \right) + t C_2 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$$

• When $C_2 \neq 0$: $\vec{\mathbf{x}}(t)$ are linear functions, with $\vec{\mathbf{x}}(0) = C_1 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{9} \\ 0 \end{bmatrix}$;

velocity $\frac{d\vec{\mathbf{x}}}{dt} = C_2 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$ is parallel to the eigenspace.

(d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

The equilibrium (0,0) is unstable.

We have a laminar flow, when $\lambda_1 = \lambda_2 = 0$, but $A \neq 0$.

