2D Homogeneous Linear Systems withConstant Coefficients— complex eigenvalues

Xu-Yan Chen

$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

Systems of Diff Eqs:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$
 where $\vec{\mathbf{x}}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, A is a 2×2 real constant matrix

Things to explore:

- ► General solutions
- Initial value problems
- Geometric figures
 - \triangleright Solutions graphs x_1 vs $t \& x_2$ vs t
 - \triangleright Direction fields in the (x_1, x_2) plane
 - Phase portraits in the (x_1, x_2) plane
- Stability/instability of equilibrium $(x_1, x_2) = (0, 0)$

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

ightharpoonup Assume that the eigenvalues of A are complex:

$$\lambda_1 = \alpha + \beta i, \lambda_2 = \alpha - \beta i$$
 (with $\beta \neq 0$).

How do we find solutions?

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

ightharpoonup Assume that the eigenvalues of A are complex:

$$\lambda_1 = \alpha + \beta i, \lambda_2 = \alpha - \beta i \quad \text{(with } \beta \neq 0\text{)}.$$

How do we find solutions?

Find an eigenvector $\vec{\mathbf{u}}_1$ for $\lambda_1 = \alpha + \beta i$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$.

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

Assume that the eigenvalues of A are complex:

$$\lambda_1 = \alpha + \beta i, \lambda_2 = \alpha - \beta i \quad \text{(with } \beta \neq 0\text{)}.$$

How do we find solutions?

Find an eigenvector $\vec{\mathbf{u}}_1$ for $\lambda_1 = \alpha + \beta i$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$.

The eigenvectors will also be complex vectors.

 $ightharpoonup e^{\lambda_1 t} \vec{\mathbf{u}}_1$ is a complex solution of the system.

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

ightharpoonup Assume that the eigenvalues of A are complex:

$$\lambda_1 = \alpha + \beta i, \lambda_2 = \alpha - \beta i \quad \text{(with } \beta \neq 0\text{)}.$$

How do we find solutions?

Find an eigenvector $\vec{\mathbf{u}}_1$ for $\lambda_1 = \alpha + \beta i$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$.

The eigenvectors will also be complex vectors.

 $ightharpoonup e^{\lambda_1 t} \vec{\mathbf{u}}_1$ is a complex solution of the system.

$$\qquad \qquad \bullet \quad e^{\lambda_1 t} \vec{\mathbf{u}}_1 = \operatorname{Re}\left(e^{\lambda_1 t} \vec{\mathbf{u}}_1\right) + i \operatorname{Im}\left(e^{\lambda_1 t} \vec{\mathbf{u}}_1\right).$$

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

ightharpoonup Assume that the eigenvalues of A are complex:

$$\lambda_1 = \alpha + \beta i, \lambda_2 = \alpha - \beta i \quad \text{(with } \beta \neq 0\text{)}.$$

How do we find solutions?

Find an eigenvector $\vec{\mathbf{u}}_1$ for $\lambda_1 = \alpha + \beta i$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$.

- $ightharpoonup e^{\lambda_1 t} \vec{\mathbf{u}}_1$ is a complex solution of the system.

 - ▶ Re $(e^{\lambda_1 t} \vec{\mathbf{u}}_1)$ is a real solution.

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

ightharpoonup Assume that the eigenvalues of A are complex:

$$\lambda_1 = \alpha + \beta i, \lambda_2 = \alpha - \beta i \quad \text{(with } \beta \neq 0\text{)}.$$

How do we find solutions?

Find an eigenvector $\vec{\mathbf{u}}_1$ for $\lambda_1 = \alpha + \beta i$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$.

- $ightharpoonup e^{\lambda_1 t} \vec{\mathbf{u}}_1$ is a complex solution of the system.

 - ▶ Re $(e^{\lambda_1 t} \vec{\mathbf{u}}_1)$ is a real solution.
 - ▶ Im $(e^{\lambda_1 t} \vec{\mathbf{u}}_1)$ is another real solution.

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

 \triangleright Assume that the eigenvalues of A are complex:

$$\lambda_1 = \alpha + \beta i, \lambda_2 = \alpha - \beta i \quad \text{(with } \beta \neq 0\text{)}.$$

How do we find solutions?

Find an eigenvector $\vec{\mathbf{u}}_1$ for $\lambda_1 = \alpha + \beta i$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$.

- $ightharpoonup e^{\lambda_1 t} \vec{\mathbf{u}}_1$ is a complex solution of the system.

 - ▶ Re $(e^{\lambda_1 t} \vec{\mathbf{u}}_1)$ is a real solution.
 - ▶ Im $(e^{\lambda_1 t} \vec{\mathbf{u}}_1)$ is another real solution.
 - ► Recall Euler's formula:

$$e^{\lambda_1 t} = e^{(\alpha + \beta i)t} = e^{\alpha t}e^{\beta it} = e^{\alpha t}[\cos(\beta t) + i\sin(\beta t)].$$

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

 \triangleright Assume that the eigenvalues of A are complex:

$$\lambda_1 = \alpha + \beta i, \lambda_2 = \alpha - \beta i$$
 (with $\beta \neq 0$).

How do we find solutions?

Find an eigenvector $\vec{\mathbf{u}}_1$ for $\lambda_1 = \alpha + \beta i$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$.

The eigenvectors will also be complex vectors.

- $e^{\lambda_1 t} \vec{\mathbf{u}}_1$ is a complex solution of the system.

 - $ightharpoonup \operatorname{Re}\left(e^{\lambda_1 t}\vec{\mathbf{u}}_1\right)$ is a real solution.
 - ▶ Im $(e^{\lambda_1 t} \vec{\mathbf{u}}_1)$ is another real solution.
 - ► Recall Euler's formula:

$$e^{\lambda_1 t} = e^{(\alpha + \beta i)t} = e^{\alpha t}e^{\beta it} = e^{\alpha t}[\cos(\beta t) + i\sin(\beta t)].$$

► General solutions are

$$\vec{\mathbf{x}}(t) = C_1 \operatorname{Re} \left(e^{\lambda_1 t} \vec{\mathbf{u}}_1 \right) + C_2 \operatorname{Im} \left(e^{\lambda_1 t} \vec{\mathbf{u}}_1 \right).$$

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

General Solution Formula:

Assume that A has a complex eigenvalue $\lambda_1 = \alpha + \beta i$ and a corresponding eigenvector $\vec{\mathbf{u}}_1 = \vec{\mathbf{a}} + i \vec{\mathbf{b}}$.

(It follows that $\lambda_2 = \alpha - \beta i$ is the other eigenvalue and $\vec{\mathbf{u}}_2 = \vec{\mathbf{a}} - i \vec{\mathbf{b}}$ is its eigenvector.)

► Complex-valued formula:

$$\vec{\mathbf{x}}(t) = C_1 e^{\lambda_1 t} \vec{\mathbf{u}}_1 + C_2 e^{\lambda_2 t} \vec{\mathbf{u}}_2.$$

► Real-valued formula:

$$\vec{\mathbf{x}}(t) = C_1 \operatorname{Re} \left(e^{\lambda_1 t} \vec{\mathbf{u}}_1 \right) + C_2 \operatorname{Im} \left(e^{\lambda_1 t} \vec{\mathbf{u}}_1 \right).$$

► Real-valued formula (expanded):

$$\vec{\mathbf{x}}(t) = C_1 e^{\alpha t} \left(\cos(\beta t) \vec{\mathbf{a}} - \sin(\beta t) \vec{\mathbf{b}} \right) + C_2 e^{\alpha t} \left(\sin(\beta t) \vec{\mathbf{a}} + \cos(\beta t) \vec{\mathbf{b}} \right).$$

Note: $\alpha = \text{Re } \lambda_1$ gives the growth/decay rate, $\beta = \text{Im } \lambda_1$ is the frequency of the oscillation.

2D Systems:
$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}}$$

Phase portraits & stability of the equilibrium (0,0):

Assume that A has complex eigenvalues $\lambda_1 = \alpha + \beta i$ and $\lambda_2 = \alpha - \beta i$.

⇒ Attractive focus, asymtotically stable

 \Rightarrow Repulsive focus, unstable

⇒ Center, stable, but not asymptotically stable

Example 4. (Complex eigenvalues)

Consider
$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$$
, where $A = \begin{bmatrix} 1 & \frac{5}{2} \\ -2 & -1 \end{bmatrix}$.

- (a) Find general solutions of $\vec{\mathbf{x}}' = \begin{bmatrix} 1 & \frac{5}{2} \\ -2 & -1 \end{bmatrix} \vec{\mathbf{x}}$.
- (b) Solve the initial value problem $\vec{\mathbf{x}}' = \begin{bmatrix} 1 & \frac{5}{2} \\ -2 & -1 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$
- (c) Sketch the phase portrait.
- (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

Example 4 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 1 & \frac{5}{2} \\ -2 & -1 \end{bmatrix} \vec{\mathbf{x}}$$

Example 4 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 1 & \frac{5}{2} \\ -2 & -1 \end{bmatrix} \vec{\mathbf{x}}$$

Example 4 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 1 & \frac{5}{2} \\ -2 & -1 \end{bmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} 1 - \lambda & \frac{5}{2} \\ -2 & -1 - \lambda \end{bmatrix}$$

Example 4 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 1 & \frac{5}{2} \\ -2 & -1 \end{bmatrix} \vec{\mathbf{x}}$$

$$\det\begin{bmatrix} 1 - \lambda & \frac{5}{2} \\ -2 & -1 - \lambda \end{bmatrix} = \lambda^2 + 4 = 0$$

Example 4 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 1 & \frac{5}{2} \\ -2 & -1 \end{bmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} 1 - \lambda & \frac{5}{2} \\ -2 & -1 - \lambda \end{bmatrix} = \lambda^2 + 4 = 0$$

$$\Rightarrow \lambda_1 = 2i, \lambda_2 = -2i$$

Example 4 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} 1 & \frac{5}{2} \\ -2 & -1 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det\begin{bmatrix} 1 - \lambda & \frac{5}{2} \\ -2 & -1 - \lambda \end{bmatrix} = \lambda^2 + 4 = 0$$

$$\Rightarrow \lambda_1 = 2i, \lambda_2 = -2i$$

Example 4 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} 1 & \frac{3}{2} \\ -2 & -1 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} 1 - \lambda & \frac{5}{2} \\ -2 & -1 - \lambda \end{bmatrix} = \lambda^2 + 4 = 0$$

$$\Rightarrow \lambda_1 = 2i, \lambda_2 = -2i$$

$$(A-2iI)\vec{\mathbf{x}}=0\Leftrightarrow\begin{bmatrix}1-2i&\frac{5}{2}\\-2&-1-2i\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}$$

Example 4 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} 1 & \frac{5}{2} \\ -2 & -1 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} 1 - \lambda & \frac{5}{2} \\ -2 & -1 - \lambda \end{bmatrix} = \lambda^2 + 4 = 0$$

$$\Rightarrow \lambda_1 = 2i, \lambda_2 = -2i$$

$$(A - 2iI)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} 1 - 2i & \frac{5}{2} \\ -2 & -1 - 2i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\Leftrightarrow -2x_1 + (-1 - 2i)x_2 = 0$$

Example 4 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} 1 & \frac{5}{2} \\ -2 & -1 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} 1 - \lambda & \frac{5}{2} \\ -2 & -1 - \lambda \end{bmatrix} = \lambda^2 + 4 = 0$$

$$\Rightarrow \lambda_1 = 2i, \lambda_2 = -2i$$

$$\begin{split} &(A-2iI)\vec{\mathbf{x}}=0\Leftrightarrow\begin{bmatrix}1-2i&\frac{5}{2}\\-2&-1-2i\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}\\ \Leftrightarrow &-2x_1+(-1-2i)x_2=0\Leftrightarrow\begin{bmatrix}x_1\\x_2\end{bmatrix}=x_2\begin{bmatrix}-1/2-i\\1\end{bmatrix} \end{split}$$

Example 4 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} 1 & \frac{5}{2} \\ -2 & -1 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} 1 - \lambda & \frac{5}{2} \\ -2 & -1 - \lambda \end{bmatrix} = \lambda^2 + 4 = 0$$

$$\Rightarrow \lambda_1 = 2i, \lambda_2 = -2i$$

$$(A - 2iI)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} 1 - 2i & \frac{5}{2} \\ -2 & -1 - 2i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow -2x_1 + (-1 - 2i)x_2 = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -1/2 - i \\ 1 \end{bmatrix}$$

$$\Rightarrow \text{An eigenvector } \vec{\mathbf{u}}_1 = \begin{bmatrix} -1/2 - i \\ 1 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} + i \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Example 4 (a) $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 1 & \frac{5}{2} \\ -2 & -1 \end{bmatrix} \vec{\mathbf{x}}$

$$ightharpoonup$$
 Eigenvalues of A, by solving $\det(A - \lambda I) = 0$:

$$\det \begin{bmatrix} 1 - \lambda & \frac{5}{2} \\ -2 & -1 - \lambda \end{bmatrix} = \lambda^2 + 4 = 0$$

$$\Rightarrow \lambda_1 = 2i, \lambda_2 = -2i$$

▶ Eigenvectors of A for $\lambda_1 = 2i$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$(A - 2iI)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} 1 - 2i & \frac{5}{2} \\ -2 & -1 - 2i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\Leftrightarrow -2x_1 + (-1 - 2i)x_2 = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -1/2 - i \\ 1 \end{bmatrix}$$
$$\Rightarrow \text{An eigenvector } \vec{\mathbf{u}}_1 = \begin{bmatrix} -1/2 - i \\ 1 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} + i \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

General solutions:

$$\vec{\mathbf{x}}(t) = C_1 \left(\cos(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} - \sin(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right) + C_2 \left(\sin(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} + \cos(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right)$$

Example 4 (b) Solve $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 1 & \frac{5}{2} \\ -2 & -1 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Example 4 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 1 & \frac{5}{2} \\ -2 & -1 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

► General solutions:

$$\vec{\mathbf{x}}(t) = C_1 \left(\cos(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} - \sin(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right) + C_2 \left(\sin(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} + \cos(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right)$$

Example 4 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 1 & \frac{5}{2} \\ -2 & -1 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

► General solutions:

$$\vec{\mathbf{x}}(t) = C_1 \left(\cos(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} - \sin(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right) + C_2 \left(\sin(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} + \cos(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right)$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 1\\2 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} -1/2\\1 \end{bmatrix} + C_2 \begin{bmatrix} -1\\0 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 2\\-2 \end{bmatrix}$$

Example 4 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} 1 & \frac{5}{2} \\ -2 & -1 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

► General solutions:

$$\vec{\mathbf{x}}(t) = C_1 \left(\cos(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} - \sin(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right) + C_2 \left(\sin(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} + \cos(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right)$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 1\\2 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} -1/2\\1 \end{bmatrix} + C_2 \begin{bmatrix} -1\\0 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 2\\-2 \end{bmatrix}$$

▶ The solution to the initial value problem:

$$\vec{\mathbf{x}}(t) = 2\left(\cos(2t)\begin{bmatrix} -1/2\\1 \end{bmatrix} - \sin(2t)\begin{bmatrix} -1\\0 \end{bmatrix}\right)$$
$$-2\left(\sin(2t)\begin{bmatrix} -1/2\\1 \end{bmatrix} + \cos(2t)\begin{bmatrix} -1\\0 \end{bmatrix}\right),$$
$$\vec{\mathbf{x}}(t) = \begin{bmatrix} \cos(2t) + 3\sin(2t)\\2\cos(2t) - 2\sin(2t) \end{bmatrix}$$

Example 4 (c) Phase portrait of $\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} 1 & \frac{9}{2} \\ -2 & -1 \end{vmatrix} \vec{\mathbf{x}}$

General solutions:

$$\vec{\mathbf{x}}(t) = C_1 \left(\cos(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} - \sin(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right) + C_2 \left(\sin(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} + \cos(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right)$$

Example 4 (c) Phase portrait of $\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} 1 & \frac{5}{2} \\ -2 & -1 \end{vmatrix} \vec{\mathbf{x}}$

General solutions;

$$\vec{\mathbf{x}}(t) = C_1 \left(\cos(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} - \sin(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right) + C_2 \left(\sin(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} + \cos(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right)$$

Example 4 (c) Phase portrait of $\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} 1 & \frac{3}{2} \\ -2 & -1 \end{vmatrix} \vec{\mathbf{x}}$

General solutions:

$$\vec{\mathbf{x}}(t) = C_1 \left(\cos(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} - \sin(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right) + C_2 \left(\sin(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} + \cos(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right)$$

Periodic oscillations: frequency = 2, period = $2\pi/2 = \pi$.

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \left(\cos(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} - \sin(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right) + C_2 \left(\sin(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} + \cos(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right)$$

Phase Portrait (center)

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \left(\cos(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} - \sin(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right) + C_2 \left(\sin(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} + \cos(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right)$$

Phase Portrait (center)

Solutions starting near (0,0) stay close to (0,0), but $\lim_{t\to\infty} \vec{\mathbf{x}}(t) \neq (0,0)$.

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \left(\cos(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} - \sin(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right) + C_2 \left(\sin(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} + \cos(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right)$$

Phase Portrait (center)

Solutions starting near (0,0) stay close to (0,0), but $\lim_{t\to\infty} \vec{\mathbf{x}}(t) \neq (0,0)$.

The equilibrium (0,0) is stable, but not asymptotically stable.

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 \left(\cos(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} - \sin(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right) + C_2 \left(\sin(2t) \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} + \cos(2t) \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right)$$

Phase Portrait (center)

Solutions starting near (0,0) stay close to (0,0), but $\lim_{t\to\infty} \vec{\mathbf{x}}(t) \neq (0,0)$.

The equilibrium (0,0) is stable, but not asymptotically stable.

We have a *center*, when eigenvalues $\lambda = \pm \beta i$.

Example 5. (Complex eigenvalues)

Consider
$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$$
, where $A = \begin{bmatrix} -5 & -39 \\ 6 & 1 \end{bmatrix}$.

- (a) Find general solutions of $\vec{\mathbf{x}}' = \begin{bmatrix} -5 & -39 \\ 6 & 1 \end{bmatrix} \vec{\mathbf{x}}$.
- (b) Solve the initial value problem $\vec{\mathbf{x}}' = \begin{bmatrix} -5 & -39 \\ 6 & 1 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$
- (c) Sketch the phase portrait.
- (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

Example 5 (a) $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -5 & -39 \\ 6 & 1 \end{bmatrix} \vec{\mathbf{x}}$

Example 5 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -5 & -39 \\ 6 & 1 \end{bmatrix} \vec{\mathbf{x}}$$

$$\det\begin{bmatrix} -5 - \lambda & -39 \\ 6 & 1 - \lambda \end{bmatrix} = \lambda^2 + 4\lambda + 229 = 0$$

Example 5 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -5 & -39 \\ 6 & 1 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -5 - \lambda & -39 \\ 6 & 1 - \lambda \end{bmatrix} = \lambda^2 + 4\lambda + 229 = 0$$

$$\Rightarrow \lambda_1 = -2 + 15i, \lambda_2 = -2 - 15i$$

Example 5 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -5 & -39 \\ 6 & 1 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -5 - \lambda & -39 \\ 6 & 1 - \lambda \end{bmatrix} = \lambda^2 + 4\lambda + 229 = 0$$

$$\Rightarrow \lambda_1 = -2 + 15i, \lambda_2 = -2 - 15i$$

Example 5 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -5 & -39 \\ 6 & 1 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -5 - \lambda & -39 \\ 6 & 1 - \lambda \end{bmatrix} = \lambda^2 + 4\lambda + 229 = 0$$

$$\Rightarrow \lambda_1 = -2 + 15i, \lambda_2 = -2 - 15i$$

$$\Big(A-(-2+15i)I\Big)\vec{\mathbf{x}}=0 \Leftrightarrow \begin{bmatrix} -3-15i & -39 \\ 6 & 3-15i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Example 5 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -5 & -39 \\ 6 & 1 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -5 - \lambda & -39 \\ 6 & 1 - \lambda \end{bmatrix} = \lambda^2 + 4\lambda + 229 = 0$$

$$\Rightarrow \lambda_1 = -2 + 15i, \lambda_2 = -2 - 15i$$

$$\left(A - (-2 + 15i)I\right)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} -3 - 15i & -39 \\ 6 & 3 - 15i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow 6x_1 + (3 - 15i)x_2 = 0$$

Example 5 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -5 & -39 \\ 6 & 1 \end{bmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -5 - \lambda & -39 \\ 6 & 1 - \lambda \end{bmatrix} = \lambda^2 + 4\lambda + 229 = 0$$

$$\Rightarrow \lambda_1 = -2 + 15i, \lambda_2 = -2 - 15i$$

$$\left(A - (-2 + 15i)I \right) \vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} -3 - 15i & -39 \\ 6 & 3 - 15i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow 6x_1 + (3 - 15i)x_2 = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -\frac{1}{2} + \frac{5}{2}i \\ 1 \end{bmatrix}$$

Example 5 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -5 & -39 \\ 6 & 1 \end{vmatrix} \vec{\mathbf{x}}$$

ightharpoonup Eigenvalues of A, by solving $\det(A - \lambda I) = 0$:

$$\det \begin{bmatrix} -5 - \lambda & -39 \\ 6 & 1 - \lambda \end{bmatrix} = \lambda^2 + 4\lambda + 229 = 0$$

$$\Rightarrow \lambda_1 = -2 + 15i, \lambda_2 = -2 - 15i$$

$$\left(A - (-2 + 15i)I \right) \vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} -3 - 15i & -39 \\ 6 & 3 - 15i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow 6x_1 + (3 - 15i)x_2 = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -\frac{1}{2} + \frac{5}{2}i \\ 1 \end{bmatrix}$$

$$\Rightarrow \text{An eigenvector } \vec{\mathbf{u}}_1 = \begin{bmatrix} -\frac{1}{2} + \frac{5}{2}i \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + i \begin{bmatrix} \frac{5}{2} \\ 0 \end{bmatrix}$$

Example 5 (a) $\frac{d\vec{x}}{dt} = \begin{vmatrix} -5 & -39 \\ 6 & 1 \end{vmatrix} \vec{x}$

 \blacktriangleright Eigenvalues of A, by solving $\det(A - \lambda I) = 0$:

$$\det \begin{bmatrix} -5 - \lambda & -39 \\ 6 & 1 - \lambda \end{bmatrix} = \lambda^2 + 4\lambda + 229 = 0$$
$$\Rightarrow \lambda_1 = -2 + 15i, \lambda_2 = -2 - 15i$$

$$\left(A - (-2 + 15i)I\right)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} -3 - 15i & -39 \\ 6 & 3 - 15i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow 6x_1 + (3 - 15i)x_2 = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -\frac{1}{2} + \frac{5}{2}i \\ 1 \end{bmatrix}$$

$$\Rightarrow \text{An eigenvector } \vec{\mathbf{u}}_1 = \begin{bmatrix} -\frac{1}{2} + \frac{5}{2}i \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + i \begin{bmatrix} \frac{5}{2} \\ 0 \end{bmatrix}$$

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \left(\cos(15t) \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} - \sin(15t) \begin{bmatrix} \frac{5}{2} \\ 0 \end{bmatrix} \right) + C_2 e^{-2t} \left(\sin(15t) \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + \cos(15t) \begin{bmatrix} \frac{5}{2} \\ 0 \end{bmatrix} \right)$$

Example 5 (b) Solve $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -5 & -39 \\ 6 & 1 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Example 5 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -5 & -39 \\ 6 & 1 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \left(\cos(15t) \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} - \sin(15t) \begin{bmatrix} \frac{5}{2} \\ 0 \end{bmatrix} \right) + C_2 e^{-2t} \left(\sin(15t) \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + \cos(15t) \begin{bmatrix} \frac{5}{2} \\ 0 \end{bmatrix} \right)$$

Example 5 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -5 & -39 \\ 6 & 1 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \left(\cos(15t) \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} - \sin(15t) \begin{bmatrix} \frac{5}{2} \\ 0 \end{bmatrix} \right) + C_2 e^{-2t} \left(\sin(15t) \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + \cos(15t) \begin{bmatrix} \frac{5}{2} \\ 0 \end{bmatrix} \right)$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 1\\2 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} -\frac{1}{2}\\1 \end{bmatrix} + C_2 \begin{bmatrix} \frac{5}{2}\\0 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 2\\\frac{4}{5} \end{bmatrix}$$

Example 5 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -5 & -39 \\ 6 & 1 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \left(\cos(15t) \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} - \sin(15t) \begin{bmatrix} \frac{5}{2} \\ 0 \end{bmatrix} \right) + C_2 e^{-2t} \left(\sin(15t) \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + \cos(15t) \begin{bmatrix} \frac{5}{2} \\ 0 \end{bmatrix} \right)$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 1\\2 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} -\frac{1}{2}\\1 \end{bmatrix} + C_2 \begin{bmatrix} \frac{5}{2}\\0 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 2\\\frac{4}{5} \end{bmatrix}$$

▶ The solution to the initial value problem:

$$\vec{\mathbf{x}}(t) = 2e^{-2t} \left(\cos(15t) \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} - \sin(15t) \begin{bmatrix} \frac{5}{2} \\ 0 \end{bmatrix} \right) + \frac{4}{5}e^{-2t} \left(\sin(15t) \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + \cos(15t) \begin{bmatrix} \frac{5}{2} \\ 0 \end{bmatrix} \right),$$

$$\vec{\mathbf{x}}(t) = e^{-2t} \begin{bmatrix} \cos(15t) - \frac{27}{5}\sin(15t) \\ 2\cos(15t) + \frac{4}{5}\sin(15t) \end{bmatrix}$$

Example 5 (c) Phase portrait of $\vec{\mathbf{x}}' = \begin{bmatrix} -5 & -39 \\ 6 & 1 \end{bmatrix} \vec{\mathbf{x}}$

General solutions:

$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \left(\cos(15t) \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} - \sin(15t) \begin{bmatrix} \frac{5}{2} \\ 0 \end{bmatrix} \right) + C_2 e^{-2t} \left(\sin(15t) \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + \cos(15t) \begin{bmatrix} \frac{5}{2} \\ 0 \end{bmatrix} \right)$$

Example 5 (c) Phase portrait of
$$\vec{\mathbf{x}}' = \begin{bmatrix} -5 & -39 \\ 6 & 1 \end{bmatrix} \vec{\mathbf{x}}$$

$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \left(\cos(15t) \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} - \sin(15t) \begin{bmatrix} \frac{5}{2} \\ 0 \end{bmatrix} \right) + C_2 e^{-2t} \left(\sin(15t) \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + \cos(15t) \begin{bmatrix} \frac{5}{2} \\ 0 \end{bmatrix} \right)$$

Direction field

Example 5 (c) Phase portrait of $\vec{\mathbf{x}}' = \begin{bmatrix} -5 & -39 \\ 6 & 1 \end{bmatrix} \vec{\mathbf{x}}$

General solutions:

$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \left(\cos(15t) \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} - \sin(15t) \begin{bmatrix} \frac{5}{2} \\ 0 \end{bmatrix} \right) + C_2 e^{-2t} \left(\sin(15t) \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + \cos(15t) \begin{bmatrix} \frac{5}{2} \\ 0 \end{bmatrix} \right)$$

Decaying oscillations: $\begin{cases} \text{decay rate} = -2 = \text{Re } \lambda, \\ \text{frequency} = 15 = \text{Im } \lambda \end{cases}$

Direction field

Phase Portrait (attractive focus)

Example 5 (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

$$\vec{\mathbf{x}}(t) = C_1 e^{-2t} \left(\cos(15t) \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} - \sin(15t) \begin{bmatrix} \frac{5}{2} \\ 0 \end{bmatrix} \right) + C_2 e^{-2t} \left(\sin(15t) \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + \cos(15t) \begin{bmatrix} \frac{5}{2} \\ 0 \end{bmatrix} \right)$$

Phase Portrait (attractive focus)

The equilibrium (0,0) is asymptotically stable.

We have an attractive focus, when complex eigenvalues $\lambda = \alpha \pm \beta i$ have Re $\lambda = \alpha < 0$.

Example 6. (Complex eigenvalues)

Consider
$$\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$$
, where $A = \begin{bmatrix} -1 & 10 \\ -2 & 3 \end{bmatrix}$.

- (a) Find general solutions of $\vec{\mathbf{x}}' = \begin{bmatrix} -1 & 10 \\ -2 & 3 \end{bmatrix} \vec{\mathbf{x}}$.
- (b) Solve the initial value problem $\vec{\mathbf{x}}' = \begin{bmatrix} -1 & 10 \\ -2 & 3 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$
- (c) Sketch the phase portrait.
- (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

Example 6 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -1 & 10 \\ -2 & 3 \end{bmatrix} \vec{\mathbf{x}}$$

Example 6 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -1 & 10 \\ -2 & 3 \end{bmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -1 - \lambda & 10 \\ -2 & 3 - \lambda \end{bmatrix} = \lambda^2 - 2\lambda + 17 = 0$$

Example 6 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -1 & 10 \\ -2 & 3 \end{bmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -1 - \lambda & 10 \\ -2 & 3 - \lambda \end{bmatrix} = \lambda^2 - 2\lambda + 17 = 0$$

$$\Rightarrow \lambda_1 = 1 + 4i, \lambda_2 = 1 - 4i$$

Example 6 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -1 & 10 \\ -2 & 3 \end{bmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -1 - \lambda & 10 \\ -2 & 3 - \lambda \end{bmatrix} = \lambda^2 - 2\lambda + 17 = 0$$

$$\Rightarrow \lambda_1 = 1 + 4i, \lambda_2 = 1 - 4i$$

Example 6 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -1 & 10 \\ -2 & 3 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -1 - \lambda & 10 \\ -2 & 3 - \lambda \end{bmatrix} = \lambda^2 - 2\lambda + 17 = 0$$

$$\Rightarrow \lambda_1 = 1 + 4i, \lambda_2 = 1 - 4i$$

$$\Big(A - (1+4i)I\Big) \vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} -2-4i & 10 \\ -2 & 2-4i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Example 6 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -1 & 10 \\ -2 & 3 \end{bmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -1 - \lambda & 10 \\ -2 & 3 - \lambda \end{bmatrix} = \lambda^2 - 2\lambda + 17 = 0$$

$$\Rightarrow \lambda_1 = 1 + 4i, \lambda_2 = 1 - 4i$$

$$\begin{pmatrix} A - (1+4i)I \end{pmatrix} \vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} -2-4i & 10 \\ -2 & 2-4i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\Leftrightarrow -2x_1 + (2-4i)x_2 = 0$$

Example 6 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -1 & 10 \\ -2 & 3 \end{bmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -1 - \lambda & 10 \\ -2 & 3 - \lambda \end{bmatrix} = \lambda^2 - 2\lambda + 17 = 0$$

$$\Rightarrow \lambda_1 = 1 + 4i, \lambda_2 = 1 - 4i$$

$$(A - (1+4i)I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} -2 - 4i & 10 \\ -2 & 2 - 4i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow -2x_1 + (2-4i)x_2 = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix}$$

Example 6 (a)
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -1 & 10 \\ -2 & 3 \end{vmatrix} \vec{\mathbf{x}}$$

$$\det \begin{bmatrix} -1 - \lambda & 10 \\ -2 & 3 - \lambda \end{bmatrix} = \lambda^2 - 2\lambda + 17 = 0$$

$$\Rightarrow \lambda_1 = 1 + 4i, \lambda_2 = 1 - 4i$$

$$(A - (1+4i)I)\vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} -2 - 4i & 10 \\ -2 & 2 - 4i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow -2x_1 + (2-4i)x_2 = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix}$$

$$\Rightarrow \text{An eigenvector } \vec{\mathbf{u}}_1 = \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + i \begin{bmatrix} -2 \\ 0 \end{bmatrix}$$

Example 6 (a) $\frac{d\vec{\mathbf{x}}}{dt} = \begin{vmatrix} -1 & 10 \\ -2 & 3 \end{vmatrix} \vec{\mathbf{x}}$

 \blacktriangleright Eigenvalues of A, by solving $\det(A - \lambda I) = 0$:

$$\det \begin{bmatrix} -1 - \lambda & 10 \\ -2 & 3 - \lambda \end{bmatrix} = \lambda^2 - 2\lambda + 17 = 0$$
$$\Rightarrow \lambda_1 = 1 + 4i, \lambda_2 = 1 - 4i$$

Eigenvectors of A for $\lambda_1 = 1 + 4i$, by solving $(A - \lambda_1 I)\vec{\mathbf{x}} = 0$:

$$\left(A - (1+4i)I \right) \vec{\mathbf{x}} = 0 \Leftrightarrow \begin{bmatrix} -2 - 4i & 10 \\ -2 & 2 - 4i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow -2x_1 + (2-4i)x_2 = 0 \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix}$$

$$\Rightarrow \text{An eigenvector } \vec{\mathbf{u}}_1 = \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + i \begin{bmatrix} -2 \\ 0 \end{bmatrix}$$

► General solutions: $\vec{\mathbf{x}}(t) = C_1 e^t \left(\cos(4t) \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \sin(4t) \begin{bmatrix} -2 \\ 0 \end{bmatrix} \right)$

$$+C_2e^t\left(\sin(4t)\begin{bmatrix}1\\1\end{bmatrix}+\cos(4t)\begin{bmatrix}-2\\0\end{bmatrix}\right)$$

Example 6 (b) Solve $\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -1 & 10 \\ -2 & 3 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Example 6 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -1 & 10 \\ -2 & 3 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) = C_1 e^t \left(\cos(4t) \begin{bmatrix} 1\\1 \end{bmatrix} - \sin(4t) \begin{bmatrix} -2\\0 \end{bmatrix} \right) + C_2 e^t \left(\sin(4t) \begin{bmatrix} 1\\1 \end{bmatrix} + \cos(4t) \begin{bmatrix} -2\\0 \end{bmatrix} \right)$$

Example 6 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -1 & 10 \\ -2 & 3 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) = C_1 e^t \left(\cos(4t) \begin{bmatrix} 1\\1 \end{bmatrix} - \sin(4t) \begin{bmatrix} -2\\0 \end{bmatrix} \right) + C_2 e^t \left(\sin(4t) \begin{bmatrix} 1\\1 \end{bmatrix} + \cos(4t) \begin{bmatrix} -2\\0 \end{bmatrix} \right)$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 1\\2 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} 1\\1 \end{bmatrix} + C_2 \begin{bmatrix} -2\\0 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 2\\\frac{1}{2} \end{bmatrix}$$

Example 6 (b) Solve
$$\frac{d\vec{\mathbf{x}}}{dt} = \begin{bmatrix} -1 & 10 \\ -2 & 3 \end{bmatrix} \vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\vec{\mathbf{x}}(t) = C_1 e^t \left(\cos(4t) \begin{bmatrix} 1\\1 \end{bmatrix} - \sin(4t) \begin{bmatrix} -2\\0 \end{bmatrix} \right) + C_2 e^t \left(\sin(4t) \begin{bmatrix} 1\\1 \end{bmatrix} + \cos(4t) \begin{bmatrix} -2\\0 \end{bmatrix} \right)$$

▶ Use the initial condition:

$$\vec{\mathbf{x}}(0) = \begin{bmatrix} 1\\2 \end{bmatrix} \Rightarrow C_1 \begin{bmatrix} 1\\1 \end{bmatrix} + C_2 \begin{bmatrix} -2\\0 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix} \Rightarrow \begin{bmatrix} C_1\\C_2 \end{bmatrix} = \begin{bmatrix} 2\\\frac{1}{2} \end{bmatrix}$$

▶ The solution to the initial value problem:

$$\begin{split} \vec{\mathbf{x}}(t) &= 2e^t \left(\cos(4t) \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \sin(4t) \begin{bmatrix} -2 \\ 0 \end{bmatrix} \right) \\ &+ \frac{1}{2}e^t \left(\sin(4t) \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \cos(4t) \begin{bmatrix} -2 \\ 0 \end{bmatrix} \right), \\ \vec{\mathbf{x}}(t) &= e^t \begin{bmatrix} \cos(4t) + \frac{9}{2}\sin(4t) \\ 2\cos(4t) + \frac{1}{2}\sin(4t) \end{bmatrix} \end{split}$$

Example 6 (c) Phase portrait of $\vec{\mathbf{x}}' = \begin{bmatrix} -1 & 10 \\ -2 & 3 \end{bmatrix} \vec{\mathbf{x}}$

General solutions:

$$\vec{\mathbf{x}}(t) = C_1 e^t \left(\cos(4t) \begin{bmatrix} 1\\1 \end{bmatrix} - \sin(4t) \begin{bmatrix} -2\\0 \end{bmatrix} \right) + C_2 e^t \left(\sin(4t) \begin{bmatrix} 1\\1 \end{bmatrix} + \cos(4t) \begin{bmatrix} -2\\0 \end{bmatrix} \right)$$

Example 6 (c) Phase portrait of
$$\vec{\mathbf{x}}' = \begin{bmatrix} -1 & 10 \\ -2 & 3 \end{bmatrix} \vec{\mathbf{x}}$$

$$\vec{\mathbf{x}}(t) = C_1 e^t \left(\cos(4t) \begin{bmatrix} 1\\1 \end{bmatrix} - \sin(4t) \begin{bmatrix} -2\\0 \end{bmatrix} \right) + C_2 e^t \left(\sin(4t) \begin{bmatrix} 1\\1 \end{bmatrix} + \cos(4t) \begin{bmatrix} -2\\0 \end{bmatrix} \right)$$

Direction field

Example 6 (c) Phase portrait of $\vec{\mathbf{x}}' = \begin{vmatrix} -1 & 10 \\ -2 & 3 \end{vmatrix} \vec{\mathbf{x}}$

General solutions:

$$\vec{\mathbf{x}}(t) = C_1 e^t \left(\cos(4t) \begin{bmatrix} 1\\1 \end{bmatrix} - \sin(4t) \begin{bmatrix} -2\\0 \end{bmatrix} \right) + C_2 e^t \left(\sin(4t) \begin{bmatrix} 1\\1 \end{bmatrix} + \cos(4t) \begin{bmatrix} -2\\0 \end{bmatrix} \right)$$

Growing oscillations: $\begin{cases} \text{growth rate} = 1 = \text{Re } \lambda, \\ \text{frequency} = 4 = \text{Im } \lambda \end{cases}$

Phase Portrait (repulsive focus)

Example 6 (d) Is the equilibrium (0,0) stable, asymptotically stable, or unstable?

General solutions:
$$\vec{\mathbf{x}}(t) = C_1 e^t \left(\cos(4t) \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \sin(4t) \begin{bmatrix} -2 \\ 0 \end{bmatrix} \right) + C_2 e^t \left(\sin(4t) \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \cos(4t) \begin{bmatrix} -2 \\ 0 \end{bmatrix} \right)$$

Phase Portrait (repulsive focus)

The equilibrium (0,0) is unstable.

We have a repulsive focus, when complex eigenvalues $\lambda = \alpha \pm \beta i$ have Re $\lambda = \alpha > 0$.