First order scalar linear equations: $\frac{dy}{dx} + a(x)y = b(x)$

Solution Method: (The Method of Integrating Factor)

Step 1. Find an antiderivative A(x) of a(x); namely, A(x) satisfies A'(x) = a(x). Such a function A(x) can be found by integrating a(x).

Step 2. Multiply both sides of the ODE by $e^{A(x)}$:

$$e^{A(x)}\left(\frac{dy}{dx} + a(x)y\right) = b(x)e^{A(x)}.$$

Notice that the left hand side equals $\frac{d}{dx} \left(e^{A(x)} y \right)$. We obtain

$$\frac{d}{dx}\left(e^{A(x)}y\right) = b(x)e^{A(x)}.$$

Now integrating the two sides yields:

$$e^{A(x)}y = \int b(x)e^{A(x)}dx + C.$$

Thus,

$$y = e^{-A(x)} \int b(x)e^{A(x)}dx + Ce^{-A(x)}.$$

Example: Solve $y' + 2xy = x^3$.

Solution: Here, a(x) = 2x. The function $A(x) = x^2$ is an antiderivative of a(x). Multiply both sides of the ODE by $e^{A(x)} = e^{x^2}$:

$$e^{x^2}(y'+2xy) = x^3e^{x^2}$$
, or $\frac{d}{dx}(e^{x^2}y) = x^3e^{x^2}$.

An integration gives

$$e^{x^2}y = \int x^3 e^{x^2} dx + C = \frac{1}{2}x^2 e^{x^2} - \frac{1}{2}e^{x^2} + C.$$

Thus,

$$y = \frac{1}{2}x^2 - \frac{1}{2} + Ce^{-x^2},$$

where C is an arbitrary constant.

Exercises

Solve the following ODEs and initial value problems of ODEs.

[1]
$$y'(t) + (2t - \sin 2t)y(t) = 0$$

[2]
$$tx'(t) + 4x(t) = 0 \ (t > 0), \ x(3) = 2$$

$$[3] y' + 2y = e^x$$

[4]
$$y'(t) + (2t - \sin 2t)y(t) = 3e^{-t^2}\sin 2t$$

[5]
$$y' + (6x^2 - 2x)y = 150x^5e^{3x^3 + x^2}$$

[6]
$$y' + \frac{2}{x}y = x^5, y(1) = 1$$

Answers

[1]
$$y = Ce^{-t^2 - 0.5\cos 2t}$$

[2]
$$x(t) = 162t^{-4}$$

[3]
$$y = \frac{1}{3}e^x + Ce^{-2x}$$

[4]
$$y = -3e^{-t^2} + Ce^{-t^2 - 0.5\cos 2t}$$

[5]
$$y = 2(5x^3 - 1)e^{3x^3 + x^2} + Ce^{-2x^3 + x^2}$$

[6]
$$y = \frac{1}{8}x^6 + \frac{7}{8}x^{-2}$$