Row Reduction (1)
From a General Matrix to the Reduced Echelon Form

The colors below mean the following:
Blue=Done Part, Yellow=Current Focus, Pink=Pivot

The Given Matrix
0 0 0 1 2 1 2 -1 0 -1 2 3
0 0 0 -3 -6 -3 -6 3 0 3 -6 -3
0 0 2 -1 3 3 4 -3 -1 0 -4 1
0 0 6 -11 -7 1 -4 -1 0 8 -4 1
0 0 4 -7 -4 -1 4 -3 -7 1 -6 3
0 0 0 0 0 4 -12 4 10 8 -24 -12

Objective: Obtain the reduced echelon form of the given matrix by elementary row operations.
Three types of row operations are allowed:

In a nutshell, the row reduction process is mainly about three things:


0 0 0 1 2 1 2 -1 0 -1 2 3
0 0 0 -3 -6 -3 -6 3 0 3 -6 -3
0 0 2 -1 3 3 4 -3 -1 0 -4 1
0 0 6 -11 -7 1 -4 -1 0 8 -4 1
0 0 4 -7 -4 -1 4 -3 -7 1 -6 3
0 0 0 0 0 4 -12 4 10 8 -24 -12
0 0 0 1 2 1 2 -1 0 -1 2 3
0 0 0 -3 -6 -3 -6 3 0 3 -6 -3
0 0 2 -1 3 3 4 -3 -1 0 -4 1
0 0 6 -11 -7 1 -4 -1 0 8 -4 1
0 0 4 -7 -4 -1 4 -3 -7 1 -6 3
0 0 0 0 0 4 -12 4 10 8 -24 -12
0 0 2 -1 3 3 4 -3 -1 0 -4 1
0 0 0 -3 -6 -3 -6 3 0 3 -6 -3
0 0 0 1 2 1 2 -1 0 -1 2 3
0 0 6 -11 -7 1 -4 -1 0 8 -4 1
0 0 4 -7 -4 -1 4 -3 -7 1 -6 3
0 0 0 0 0 4 -12 4 10 8 -24 -12
0 0 1 -1/2 3/2 3/2 2 -3/2 -1/2 0 -2 1/2
0 0 0 -3 -6 -3 -6 3 0 3 -6 -3
0 0 0 1 2 1 2 -1 0 -1 2 3
0 0 6 -11 -7 1 -4 -1 0 8 -4 1
0 0 4 -7 -4 -1 4 -3 -7 1 -6 3
0 0 0 0 0 4 -12 4 10 8 -24 -12
0 0 1 -1/2 3/2 3/2 2 -3/2 -1/2 0 -2 1/2
0 0 0 -3 -6 -3 -6 3 0 3 -6 -3
0 0 0 1 2 1 2 -1 0 -1 2 3
0 0 0 -8 -16 -8 -16 8 3 8 8 -2
0 0 0 -5 -10 -7 -4 3 -5 1 2 1
0 0 0 0 0 4 -12 4 10 8 -24 -12
0 0 1 -1/2 3/2 3/2 2 -3/2 -1/2 0 -2 1/2
0 0 0 -3 -6 -3 -6 3 0 3 -6 -3
0 0 0 1 2 1 2 -1 0 -1 2 3
0 0 0 -8 -16 -8 -16 8 3 8 8 -2
0 0 0 -5 -10 -7 -4 3 -5 1 2 1
0 0 0 0 0 4 -12 4 10 8 -24 -12
0 0 1 -1/2 3/2 3/2 2 -3/2 -1/2 0 -2 1/2
0 0 0 -3 -6 -3 -6 3 0 3 -6 -3
0 0 0 1 2 1 2 -1 0 -1 2 3
0 0 0 -8 -16 -8 -16 8 3 8 8 -2
0 0 0 -5 -10 -7 -4 3 -5 1 2 1
0 0 0 0 0 4 -12 4 10 8 -24 -12
0 0 1 -1/2 3/2 3/2 2 -3/2 -1/2 0 -2 1/2
0 0 0 1 2 1 2 -1 0 -1 2 1
0 0 0 1 2 1 2 -1 0 -1 2 3
0 0 0 -8 -16 -8 -16 8 3 8 8 -2
0 0 0 -5 -10 -7 -4 3 -5 1 2 1
0 0 0 0 0 4 -12 4 10 8 -24 -12
0 0 1 0 5/2 2 3 -2 -1/2 -1/2 -1 1
0 0 0 1 2 1 2 -1 0 -1 2 1
0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 3 0 24 6
0 0 0 0 0 -2 6 -2 -5 -4 12 6
0 0 0 0 0 4 -12 4 10 8 -24 -12
0 0 1 0 5/2 2 3 -2 -1/2 -1/2 -1 1
0 0 0 1 2 1 2 -1 0 -1 2 1
0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 3 0 24 6
0 0 0 0 0 -2 6 -2 -5 -4 12 6
0 0 0 0 0 4 -12 4 10 8 -24 -12
0 0 1 0 5/2 2 3 -2 -1/2 -1/2 -1 1
0 0 0 1 2 1 2 -1 0 -1 2 1
0 0 0 0 0 -2 6 -2 -5 -4 12 6
0 0 0 0 0 0 0 0 3 0 24 6
0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 4 -12 4 10 8 -24 -12
0 0 1 0 5/2 2 3 -2 -1/2 -1/2 -1 1
0 0 0 1 2 1 2 -1 0 -1 2 1
0 0 0 0 0 1 -3 1 5/2 2 -6 -3
0 0 0 0 0 0 0 0 3 0 24 6
0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 4 -12 4 10 8 -24 -12
0 0 1 0 5/2 0 9 -4 -11/2 -9/2 11 7
0 0 0 1 2 0 5 -2 -5/2 -3 8 4
0 0 0 0 0 1 -3 1 5/2 2 -6 -3
0 0 0 0 0 0 0 0 3 0 24 6
0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 5/2 0 9 -4 -11/2 -9/2 11 7
0 0 0 1 2 0 5 -2 -5/2 -3 8 4
0 0 0 0 0 1 -3 1 5/2 2 -6 -3
0 0 0 0 0 0 0 0 3 0 24 6
0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 5/2 0 9 -4 -11/2 -9/2 11 7
0 0 0 1 2 0 5 -2 -5/2 -3 8 4
0 0 0 0 0 1 -3 1 5/2 2 -6 -3
0 0 0 0 0 0 0 0 1 0 8 2
0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 5/2 0 9 -4 0 -9/2 55 18
0 0 0 1 2 0 5 -2 0 -3 28 9
0 0 0 0 0 1 -3 1 0 2 -26 -8
0 0 0 0 0 0 0 0 1 0 8 2
0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 5/2 0 9 -4 0 -9/2 55 18
0 0 0 1 2 0 5 -2 0 -3 28 9
0 0 0 0 0 1 -3 1 0 2 -26 -8
0 0 0 0 0 0 0 0 1 0 8 2
0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 5/2 0 9 -4 0 -9/2 55 18
0 0 0 1 2 0 5 -2 0 -3 28 9
0 0 0 0 0 1 -3 1 0 2 -26 -8
0 0 0 0 0 0 0 0 1 0 8 2
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 5/2 0 9 -4 0 -9/2 55 0
0 0 0 1 2 0 5 -2 0 -3 28 0
0 0 0 0 0 1 -3 1 0 2 -26 0
0 0 0 0 0 0 0 0 1 0 8 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
REDUCED ECHELON FORM
0 0 1 0 5/2 0 9 -4 0 -9/2 55 0
0 0 0 1 2 0 5 -2 0 -3 28 0
0 0 0 0 0 1 -3 1 0 2 -26 0
0 0 0 0 0 0 0 0 1 0 8 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0


Remark: The reduced echelon form is unique. The reduced echelon form is independent of the row operations you choose.

1 0 2
3 2 8
1 1 3
R2-3R1  
R3-R1
1 0 2
0 2 2
0 1 1
R3-(1/2)R2
1 0 2
0 2 2
0 0 0
(1/2)R2
1 0 2
0 1 1
0 0 0
(Reduced Echelon Form)

1 0 2
3 2 8
1 1 3
Swap R1 & R3
1 1 3
3 2 8
1 0 2
R2-3R1  
R3-R1  
1 1 3
0 -1 -1
0 -1 -1
R1+R2
 
R3-R2
1 0 2
0 -1 -1
0 0 0
-R2
1 0 2
0 1 1
0 0 0
(Reduced Echelon Form)