
Infinity as an Isolated Singularity

We have so far discussed isolated singularities of holomorphic functions in the complex
plane. In this note, we extend the study to the case where z = ∞ is an isolated singularity.

Definition (Isolated Singularity at Infinity): The point at infinity z = ∞ is called an
isolated singularity of f(z) if f(z) is holomorphic in the exterior of a disk {z ∈ C : |z| > R}.

This is quite natural, since through the stereographic projection the region {z ∈ C : |z| > R}
corresponds to a punctured disk on the sphere centered at the north pole.

Notice also that z = ∞ is an isolated singularity of f(z) if and only if z = 0 is an isolated
insgularity of f(1/z). Furthermore, we use the following definitions to classify the singularities
at z = ∞.

Definition (Classifications): Let z = ∞ be an isolated singularity of f(z).
(a) f(z) has a removable singularity at z = ∞ if f(1/z) has a removable singularity at z = 0.
(b) f(z) has a pole of order m ≥ 1 at z = ∞ if f(1/z) has a pole of order m ≥ 1 at z = 0.
(c) f(z) has an essential singularity at z = ∞ if f(1/z) has an essential singularity at z = 0.

Proposition (Laurent Series): We easily obtain the following results:
(a) If z = ∞ is an isolated singularity of f(z), then

f(z) =
∞

∑

n=−∞

anzn (|z| > R),

where R is a positive number.
(b) If z = ∞ is a removable singularity of f(z), then an = 0 for all n > 0:

f(z) =
0

∑

n=−∞

anzn (|z| > R).

(c) If z = ∞ is a pole of order m ≥ 1 of f(z), then am 6= 0 and an = 0 for all n > m:

f(z) =
m

∑

n=−∞

anzn (|z| > R).

(d) If z = ∞ is an essential singularity of f(z), then an 6= 0 for infinitely many positive
integers n.

Definition (Zero at Infinity): It is also natural to call z = ∞ a zero of multiplicity m ≥ 1
of f(z) if f(1/z) can be extended to a holomorphic function g(z) on a disk B(0, δ) and z = 0
is a zero of multiplicity m of g(z).

An equivalent condition is: In the above Laurent series expansion near z = ∞, a−m 6= 0
and an = 0 for all n > −m:

f(z) =

−m
∑

n=−∞

anzn (|z| > R).
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Theorem (Entire Functions Behaving Good at Infinity are Polynomials): Let f(z)
be an entire function (that is, f(z) is holomorphic in the entire complex plane C).

(a) If z = ∞ is a removable singularity of f(z), then f(z) is a constant.
(b) If z = ∞ is a pole of order m ≥ 1 of f(z), then f(z) is a polynomial of degree m.

Definition (Transcendental Entire Functions): An entire function f(z) is called a tran-
scendental entire function if z = ∞ is an essential singularity of f(z). In view of the above
theorem, a transcendental entire function is an entire function that is not a polynomial.

Examples: (i) cos z, (ii) sin(πz), (iii) e−z
2

are transcendental entire functions. There are
other important and more sophicated examples: (iv) the Bessel function of the first kind of
order k ≥ 0:

Jk(z) =
∞

∑

n=0

(−1)n

n!(n + k)!

(z

2

)2n+k

,

(v) (z − 1)ζ(z), where ζ(z) is the Riemann zeta function which we will discuss later in the
course.

Definition (Meromorphic Functions): Let G ⊂ C∞ = C ∪ {∞} be open in C∞. A
function f is said to be meromorphic in G if it is defined and holomorphic in G except for
isolated singularities and all isolated singularities are either removable or poles.

The previous theorem can now be rephrased as: If f is meromorphic in C∞ and has no
poles in C, then it must be a polynomial.

Rational Functions: Let f(z) = P (z)/Q(z) where P (z) and Q(z) 6≡ 0 are polynomials of
degree m and n respectively. It is easy to see that f(z) is meromorphic in C∞. Moreover,







z = ∞ is a zero of order n − m of f(z) if n > m;
z = ∞ is a removable singularity of f(z) if n = m;
z = ∞ is a pole of order m − n of f(z) if n < m.

Conversely, we have the following:

Theorem (Meromorphic Functions on C∞):
If f(z) is a meromorphic function on C∞, then f(z) is a rational function of z.

Definition (Transcendental Meromorphic Functions): A function f(z) is called a
transcendental meromorphic function if it is meromorphic in C and is not a rational function.

The above theorem shows that if f(z) is a transcendental meromorphic function, then

either (a) f(z) has at most a finite number of poles in C and has an essential
singularity at z = ∞;

or (b) there are an infinite number of poles zn of f(z) accumulating at infinity:
zn → ∞.

Examples: ez/(1 + z2), 1/ sin z, and Γ(z) are transcendental meromorphic functions.
ez/(1 + z2) satisfies (a).
1/ sin z satisfies (b).
The gamma function Γ(z), which will be studied later in the course, exhibits behavior (b).

It has simple poles at negative integers z = −1,−2, ...
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Exercise:

1. Prove all claims in this note.

2. Let R(z) be a rational function of z and assume R(z) 6≡ 0. Show that the number of
zeros of R(z) in C∞ equals the number of poles of R(z) in C∞. Here, zeros and poles are
counted repeatedly according to their multiplicities and orders.

3. Suppose that f(z) is holomorphic in |z| > R. We have seen that f can be expanded into
the Laurent series:

f(z) =

∞
∑

n=−∞

anzn (|z| > R).

Define the residue of f at z = ∞ by:

Res(f ;∞) = −a−1.

Notice that even when z = ∞ is a removable singularity of f(z), it is possible that
Res(f ;∞) 6= 0.

(a) Show that Res(f ;∞) equals the residue of −z−2f(1/z) at z = 0.

(b) Show that

Res(f ;∞) = −
1

2πi

∫

|z|=r

f(z)dz (R < r < ∞),

where the circle |z| = r is oriented counterclockwise.

(c) Let f be holomorphic in C except for a finite number of isolated singularities
z1, ..., zn ∈ C. Show that

Res(f ; z1) + ... + Res(f ; zn) + Res(f ;∞) = 0.
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