Infinity as an Isolated Singularity

We have so far discussed isolated singularities of holomorphic functions in the complex
plane. In this note, we extend the study to the case where z = oo is an isolated singularity:.

Definition (Isolated Singularity at Infinity): The point at infinity z = oo is called an
isolated singularity of f(z) if f(z) is holomorphic in the exterior of a disk {z € C: |z| > R}.
This is quite natural, since through the stereographic projection the region {z € C : |z| > R}
corresponds to a punctured disk on the sphere centered at the north pole.
Notice also that z = co is an isolated singularity of f(z) if and only if z = 0 is an isolated
insgularity of f(1/z). Furthermore, we use the following definitions to classify the singularities
at z = oo.

Definition (Classifications): Let z = oo be an isolated singularity of f(z).
(a) f(z) has a removable singularity at z = oo if f(1/z) has a removable singularity at z = 0.
(b) f(2) has a pole of order m > 1 at z = oo if f(1/2) has a pole of order m > 1 at z = 0.
(c) f(2) has an essential singularity at z = oo if f(1/z) has an essential singularity at z = 0.

Proposition (Laurent Series): We easily obtain the following results:
(a) If z = o0 is an isolated singularity of f(z), then

f(2)= Y a2 (2> R),

n=—oo

where R is a positive number.
(b) If z = oo is a removable singularity of f(z), then a, =0 for alln > 0:

f(z)= Y an" (2| > R).

n=—oo

(¢) If z =00 is a pole of order m > 1 of f(z), then a,, # 0 and a, =0 for all n > m:

f(z)= Y an" (2| > R).

n=—oo

(d) If z = oo is an essential singularity of f(z), then a, # 0 for infinitely many positive
mtegers n.

Definition (Zero at Infinity): It is also natural to call z = oo a zero of multiplicity m > 1
of f(z) if f(1/2) can be extended to a holomorphic function g(z) on a disk B(0,6) and z = 0
is a zero of multiplicity m of g(z).

An equivalent condition is: In the above Laurent series expansion near z = 0o, a_,, # 0
and a,, = 0 for all n > —m:

—m

fz)= Y a.z" (2| > R).

n=—oo



Theorem (Entire Functions Behaving Good at Infinity are Polynomials): Let f(z)
be an entire function (that is, f(z) is holomorphic in the entire complex plane C).

(a) If z = o0 is a removable singularity of f(z), then f(z) is a constant.

(b) If z = 00 is a pole of order m > 1 of f(z), then f(z) is a polynomial of degree m.

Definition (Transcendental Entire Functions): An entire function f(z) is called a tran-
scendental entire function if z = oo is an essential singularity of f(z). In view of the above
theorem, a transcendental entire function is an entire function that is not a polynomial.
Examples: (i) cosz, (i) sin(rz), (iii) e~ are transcendental entire functions. There are
other important and more sophicated examples: (iv) the Bessel function of the first kind of

order £ > 0:
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(v) (2 — 1)C(2), where ((z) is the Riemann zeta function which we will discuss later in the
course.

Definition (Meromorphic Functions): Let G € C, = CU {oco} be open in C,,. A
function f is said to be meromorphic in G if it is defined and holomorphic in G except for
isolated singularities and all isolated singularities are either removable or poles.

The previous theorem can now be rephrased as: If f is meromorphic in C,, and has no
poles in C, then it must be a polynomial.

Rational Functions: Let f(z) = P(z)/Q(z) where P(z) and Q(z) # 0 are polynomials of
degree m and n respectively. It is easy to see that f(z) is meromorphic in C.,. Moreover,

z = 00 is a zero of order n —m of f(z) if n > m;
z = 00 is a removable singularity of f(z) if n = m;
z = 00 is a pole of order m —n of f(z) if n < m.

Conversely, we have the following:

Theorem (Meromorphic Functions on C):
If f(2) is a meromorphic function on C.,, then f(2) is a rational function of z.

Definition (Transcendental Meromorphic Functions): A function f(z) is called a
transcendental meromorphic function if it is meromorphic in C and is not a rational function.
The above theorem shows that if f(z) is a transcendental meromorphic function, then

either (a) f(z) has at most a finite number of poles in C and has an essential
singularity at z = oo;

or (b) there are an infinite number of poles z, of f(z) accumulating at infinity:
Zn — OQ.

Examples: €?/(1+ 2?),1/sin z, and T'(z) are transcendental meromorphic functions.

e /(1 + 2?) satisfies (a).

1/ sin z satisfies (b).

The gamma function I'(z), which will be studied later in the course, exhibits behavior (b).
It has simple poles at negative integers z = —1, -2, ...



Exercise:

1. Prove all claims in this note.

2. Let R(z) be a rational function of z and assume R(z) # 0. Show that the number of
zeros of R(z) in C, equals the number of poles of R(z) in C,. Here, zeros and poles are
counted repeatedly according to their multiplicities and orders.

3. Suppose that f(z) is holomorphic in |z| > R. We have seen that f can be expanded into
the Laurent series:

fz) =Y a.z" (2| > R).

Define the residue of f at z = oo by:
Res(f;00) = —a_;.

Notice that even when z = oo is a removable singularity of f(z), it is possible that

Res(f;00) # 0.

(a) Show that Res(f;00) equals the residue of —272f(1/z) at 2 = 0.

(b) Show that

Rmﬂmﬁrjé_f@w (R<r < oo),

where the circle |z| = r is oriented counterclockwise.

(c) Let f be holomorphic in C except for a finite number of isolated singularities
21y ey 2n € C. Show that

Res(f;21) + ... + Res(f; z,) + Res(f; 00) = 0.



