Complex Analytic Functions

- [1] Determine whether or not the following functions are complex analytic:
 - (a) f(z) = (z+1)/(z-1) $(z \neq 1)$ (b) $f(z) = |z|^2$ (c) $f(z) = e^{2y} \cos(2x) + ie^{2y} \sin(2x)$ where $x = \operatorname{Re} z, y = \operatorname{Im} z$ (d) $f(z) = e^{-y}(x \cos x - y \sin x) + ie^{-y}(y \cos x + x \sin x)$ where $x = \operatorname{Re} z, y = \operatorname{Im} z$
- [2] Can each of the following functions be the real part of a complex analytic function? If yes, give such a complex analytic function. If no, explain the reason.

(a) $u(x,y) = x^2$ (b) u(x,y) = xy (c) $u(x,y) = e^{2y}\cos(2x)$

- [3] Prove the following:
 - (a) If f(z) = u + iv and $\overline{f(z)} = u iv$ are both complex analytic, then f(z) must be a constant.
 - (b) If f(z) is complex analytic and |f(z)| is constant, then f(z) must be a constant.

Answers:

- [1] (a) Y (b) N (c) N (d) Y
- [2] (a) No, since u is not harmonic.
 - (b) Yes. $f(z) = -\frac{i}{2}z^2$ (or $-\frac{i}{2}z^2 + iC$ with any real constant C)
 - (c) Yes. $f(z) = e^{-2iz}$ (or $e^{-2iz} + iC$ with any real constant C)
- [3] (a) Use the Cauchy-Riemann equations.
 - (b) Distinguish the cases where $|f(z)| \equiv 0$ and $|f(z)| \equiv c \neq 0$. The former case is trivial. In the latter case, we have $\overline{f(z)} = c^2/f(z)$ and hence $\overline{f(z)}$ is complex analytic. The result follows from (a).